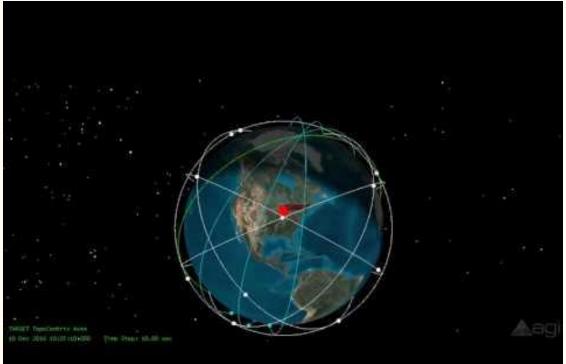

Conceptual Design Review for an Emergency Relief Constellation

Presentation Outline

Emergency Relief Constellation Mission Review

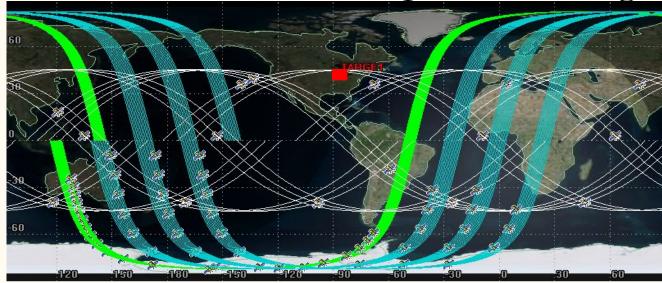
Mission Goals

• Rapid response communications and images of a 500x500 km disaster area


Broad Mission Overview

- Full system must be on standby for a maximum of 5 years
- 25% capability after 12 hours, full capability after 24 hours for 6 months
- 240 total minutes of repeater access/day
- No more than 120 minutes between communication
- 5 meter resolution for thermal IR, near IR, and visible images taken 4x/day

Key Trades and Associated Decisions


Trade	Decision		
Iraue	Communications	Imaging	
LEO vs. MEO/GEO	LEO		
Circular vs. Elliptical Orbits	Circular		
Variable vs. Invariable Orbits	Variable		
Separate Communications/Imaging vs. Combined	Separate		
Separate Imaging vs. Combined	Combined		
Correcting Orbits vs. Non-correcting	Non-correcting	Correcting	

Orbits Visualization

5

Orbital Scheme: Example at 45 Degrees Latitude

White = Communications Satellites

Green = Imaging Satellites (Full Area Photo)

Blue = Imaging Satellites (15% Photos)

Red = Target Area

Communications:

- Altitude: 625 km
- Inclination of orbit based on latitude of disaster

Imaging:

- Altitude: 561 km
- 4 Sun-Synchronous Constellations

Communications Satellites

• Orbit Properties and Numbers of Satellites and Planes

	Best Case	Worst Case
Latitudes (degrees)	0 - 5	30 - 70
Number of Planes	1	5
Number of Satellites	6	16

- Planes and satellites equally spaced
- Number of planes and satellites calculated to meet provided requirements at worst case launch scenario
 - \circ Does not account for redundancy

Communications Satellites

- Antenna Type and Information
 - Gain: 3 dB
 - Microstrip Monopole Antenna (MMA)
 - Beam Width: 150 degrees
 - Power: 1.8W per channel
- Satellite Specifications
 - Mass: 10's kg
- Attitude Determination and Control System
 - \circ Nadir Pointing within ~100 degrees

Communications Satellites: Link Budget

Link Budget	Satellite	Ground	
Frequency	0.3 GH	z (UHF)	
Antenna:	Microstrip Monopole Antenna (MMA)	Omnidirectional	
Beam Width: (degrees)	150	360	
Power:	1.8 W	5 W	
Gain:	3 dB	0 dB	
Noise Temp:	250 K	614 K	
Space Loss	175 dB		
Signal to Noise Ratio	13 dB		
Margin	~10	0 dB	

Imaging Satellites

• Orbit Properties and Numbers of Satellites and Planes:

	Best Case	Worst Case
Latitudes (degrees)	0 - 3	3 - 82
Number of Planes	3	4
Number of Satellites	19	55

- Planes and satellites are spaced accordingly to see the disaster area 4x/day and provide sufficient image overlap
- Number of planes and satellites calculated to meet provided requirements at worst case launch scenario
 - \circ Does not account for redundancy

Imaging Satellites

- Sensor and Image Information
 - Swath Width: 29 km
 - \circ 1 km of overlap between images
 - Aperture Lens Diameter: ~100 mm
 - Cost: \$100,000's per imaging system
 - \circ Power: ~40 W/imaging system

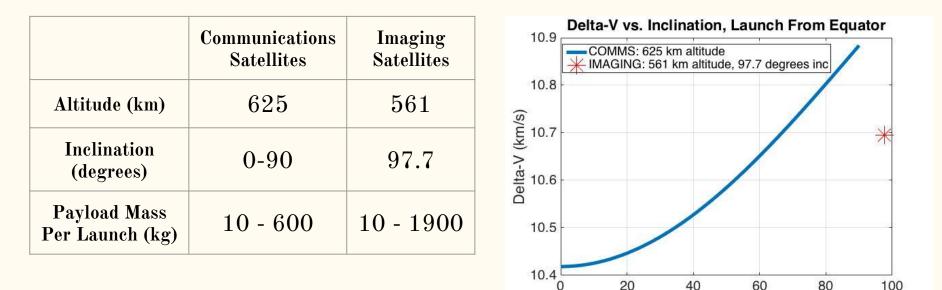
- Satellite Specification
 Mass: 10's kg
- Thermal IR
 - Aperture lens diameter to meet 5 m resolution: ~2.3 m
 - \circ $\,$ Proposed Resolution: ${\sim}72$ m $\,$

Imaging Satellites

- Attitude Determination and Control System
 - Slew up to 12 degrees off nadir
- Propulsion System
 - Micropropulsion needed for orbital maintenance
 - $\circ~$ Estimated delta-V required over 6 months: ~60 m/s
- Thermal System
 - Maintain thermal IR sensor temperature
 - Operating Range: -213 °C to -173 °C

Imaging Satellites: Link Budget

Launch Response Time Requirements


- Requirement favors building a launch pad to avoid launch delays from other launches
- Storability: 5 year storage and 12/24 hour response time requirements
 - Several viable options for storable propellants exist
 - Examining payload integration options

• Phasing Schemes

- Options include upper stage phasing, satellite micropropulsion phasing, or both
- \circ ~ Optimize phasing scheme for both response time and Δv

Launch Performance Requirements

• Equatorial launch is favored for completely variable communications orbits

Inclination (degrees)

Moving Forward: Open Trades

- Communications
 - \circ Mobile or fixed ground stations
- Imaging
 - \circ $\;$ Different types of micropropulsion systems for orbital maintenance
 - \circ $\,$ Custom vs COTS sensors and camera systems $\,$
- Launch
 - \circ $\;$ Vertical launch vehicle vs. aircraft assisted launch
 - $\circ \quad Propellant \ type$
 - Number of stages on launch vehicle
 - Ground operations

Questions?

Slide Repository

Trades Extra Slides

LEO vs. MEO/GEO

Major Trade Element	Choice(s) Considered	Pros	Cons	Status
	A. LEO	 Quick to get to Accomplished with small satellites De-orbits in under 25 years 	 Higher number of planes/satellites Quick pass times 	Accepted
	B. MEO/GEO	 Reduced number of satellites Lengthy Pass Times 	 Expensive Large satellites Response time difficulties Unnecessary for 6 month mission 	Rejected

Circular vs. Elliptical Orbits

Major Trade Element	Choice(s) Considered	Pros	Cons	Status
	A. Circular	 Little/No orbital maintenance 	 Quick passes over target 	Accepted
	B. Elliptical	 Increased time over target 	 High altitudes at apogee Orbit corrections to maintain apogee 	Rejected

Variable vs. Invariable Orbits

Major Trade Element	Choice(s) Considered	Pros	Cons	Status
	A. Variable	 Reduces number of orbital planes and allows for fewer launches 	 Can cause delays in response time 	Accepted
	B. Invariable	 Faster response time because orbits do not need to be calculated 	 Unable to meet imaging requirements Greatly increases number of planes 	Rejected

Separate Communications/Imaging vs. Combined

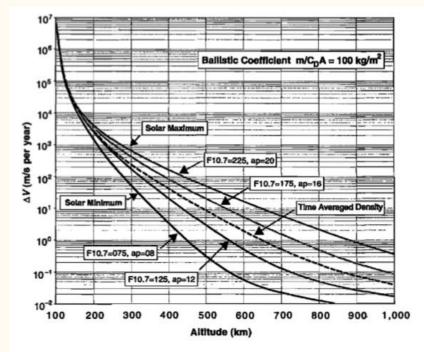
Major Trade Element	Choice(s) Considered	Pros	Cons	Status
	A. Separate Comms/Imaging	 Reduced complexity satellites Smaller components Requirements achieved differently 	 More satellites/planes 	Accepted
	B. Combined Functionality	 Reduced number of satellites 	 Large, complex satellites 	Rejected

Separate Imaging vs. Combined Imaging Function

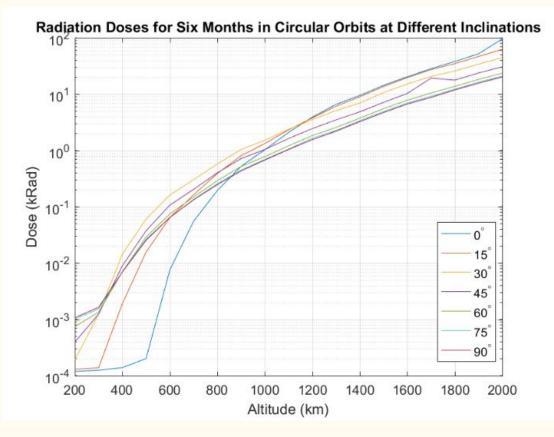
Major Trade Element	Choice(s) Considered	Pros	Cons	Status
	A. Separate Imaging Functions	 Decreased complexity per satellite 	 More satellites required Increases cost per mission 	Rejected
	B. Combined Imaging Functions	 Fewer satellites required Greatly reduced cost/number of launches 	 More complex thermal subsystem Adds size and mass 	Accepted

Correcting Orbits vs. Non-Correcting Orbits

Major Trade Element	Choice(s) Considered	Pros	Cons	Status
Communications	A. Correcting Orbits for Comms	 Longer pass times towards EOL 	 Addition of on board propulsion 	Rejected
Communications	B. Non-Correcting Orbits for Comms	 No need for on board propulsion 	 Lower pass times towards EOL 	Accepted
	C. Correcting Orbits for Imaging	 Maintain daily ground track 	 More mass for propulsion system 	Accepted
Imaging	D. Non-Correcting Orbits for Imaging	 No need for on board propulsion 	 Drag pulls down altitude J2 then affects ground track 	Rejected

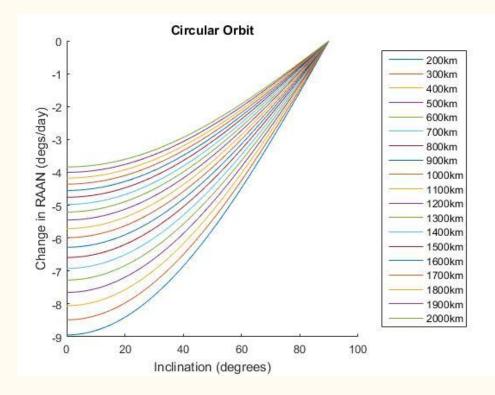

Orbits Repository

Best and Worst Case Latitudes (Communications)

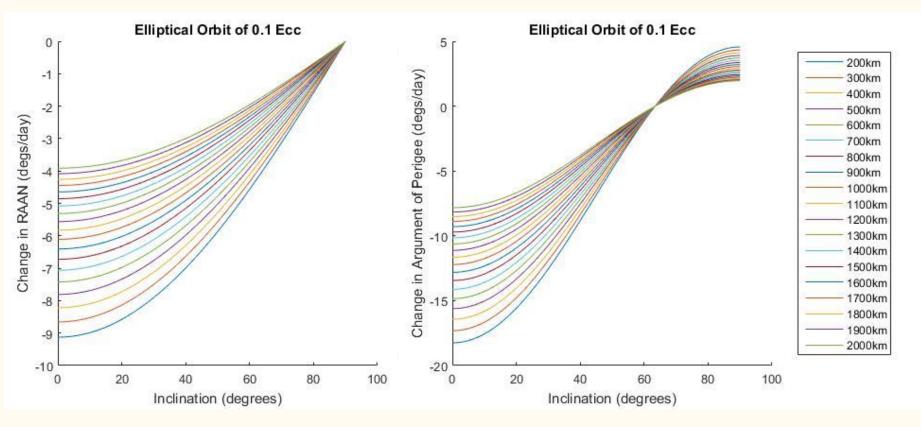

Number of Planes	Number of Satellites	Semimajor Axis (km)	Inclination (degs)	Eccentricity	Argument of Perigee (degs)	Latitude (degs)
1	6	7003	0	0	0	0
1	6	7003	0	0	0	5
3	11	7003	10	0	0	10
5	15	7003	15	0	0	15
5	15	7003	20	0	0	20
5	15	7003	25	0	0	25
5	16	7003	30	0	0	30
5	16	7003	35	0	0	35
5	16	7003	40	0	0	40
5	16	7003	45	0	0	45
5	16	7003	50	0	0	50
5	16	7003	55	0	0	55
5	16	7003	60	0	0	60
5	16	7003	65	0	0	65
5	16	7003	70	0	0	70
4	13	7003	75	0	0	75
4	13	7003	80	0	0	80
3	9	7003	85	0	0	85

Return

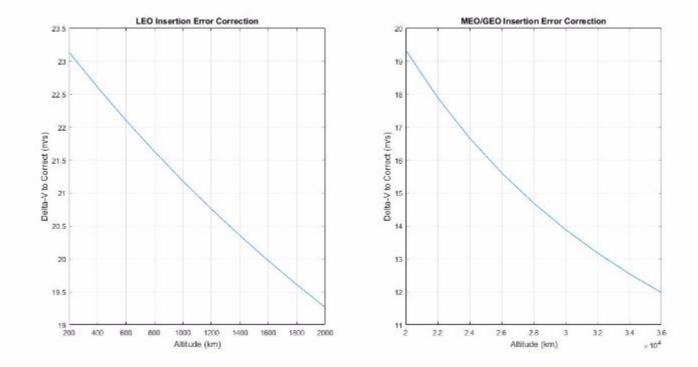
Drag Perturbation DeltaV

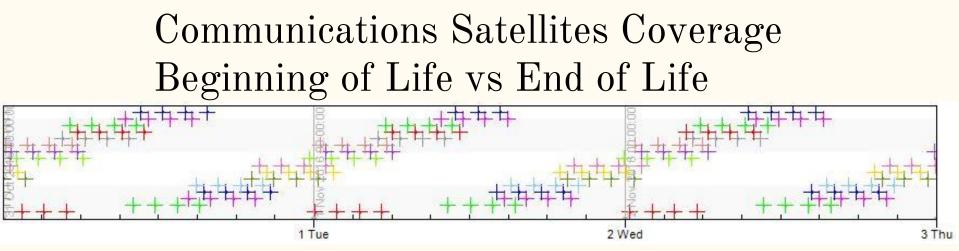


Radiation Exposure

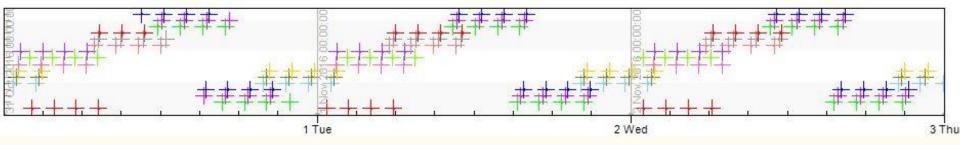


 Dose values are for a spacecraft modeled with 0.7mm of Aluminum shielding.


Orbital Perturbations: Circular



Orbital Perturbations: Elliptical (0.1 ecc example)

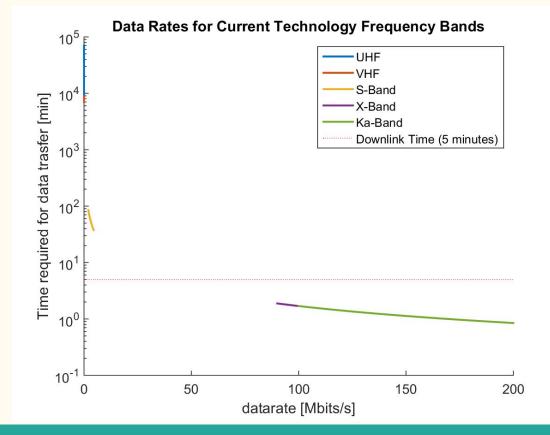


Upper Stage Insertion Correction (Delta-V)

Initial Coverage of Satellites at a semimajor of 7003 km and inclination of 35° for a latitude of 35°

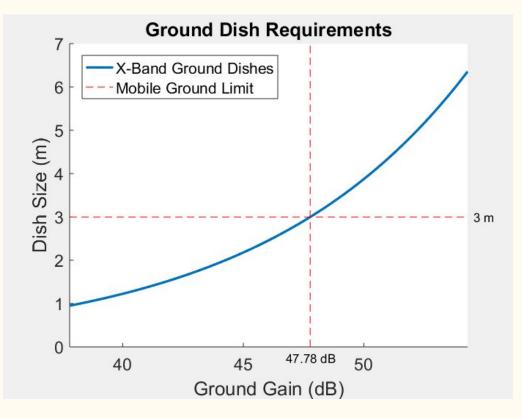
Coverage of satellites after they've been propagated for 6 months with all the perturbations. Resulted in continuous coverage from BOL to EOL.

Communications Repository

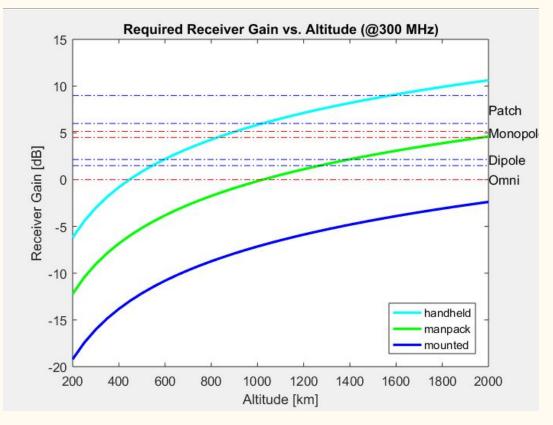

Transmit Repeater Trade (UHF)

Major Trade Element	Choice(s) Considered	Pros	Cons	Status
UHF Repeater	A. MMA	 Low pointing requirements (wide beam) Non-deployable Form fitting 	 Expensive 	Accepted
	B. Monopole	 Cost Effective 	 Obtrusive Beam Gap Complex/ Deployable 	Rejected
	C. Patch	Wide BeamForm fitting	 High Pointing Expensive 	Rejected

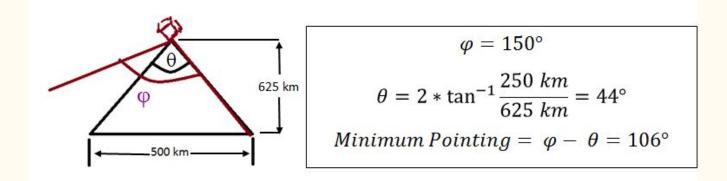
Imaging Downlink Trade


Major Trade Element	Choice(s) Considered	Pros	Cons	Status
Imaging Downlink Frequency	A. UHF	Already being used by repeater Cost effective	Very long download time	Does not meet requirements
	B.VHF	Cost effective	Very long download time	Does not meet requirement
	C. S-band		Long download time	Does not meet requirement
	D. X-band	Fast download	Expensive	Proposed option
	E. Ka-band	Fast Download	Expensive Attenuation	Overdesigned for requirement

Data Rates for Data Bands


Return 37

Ground Station Comms (Downlink)

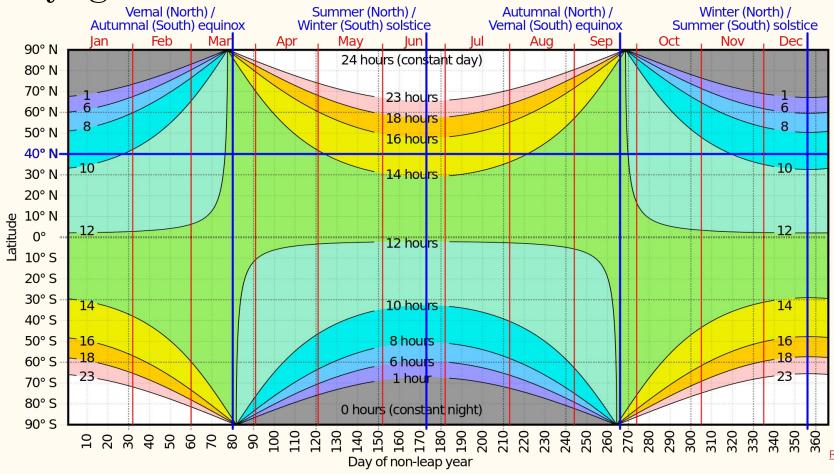


 Mobile limit based on cargo plane size restrictions

Transmitter Gain Trade (UHF)

Pointing Requirement Determination

Imaging Repository

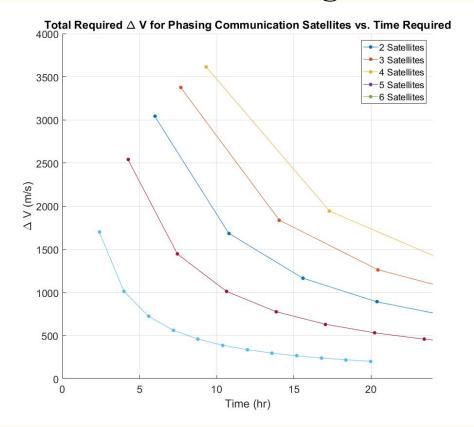

Small vs Large Imaging Satellite

Syst	em	Swath Width	# of Sats	Data per Sat per Day	Estimated Cost (imaging system)	Total Cost (imaging system)
10's	kg	29 km, Max slew: 32 km	19 in one plane and 12 in each of the other 3 planes total = 55	1.42 GB	\$100,000's	\$10,000,000's
100's	s kg	68.6 km, Max Slew: 77 km	8 in one plane and 3 in each of the other 3 planes total = 15	4.00 GB	\$10,000,000's	\$100,000,000's

Additional Image Specs

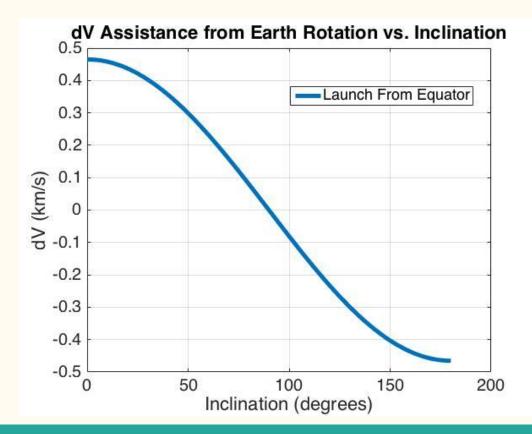
- Pixels per image:
 - Visible: 23.2 MP
 - Near IR: 23.2 MP
 - \circ Thermal: 0.11 MP
- Daylight Hours (Worst Case)
 - \circ 60° Latitude ~ 6 hours
 - \circ 70° Latitude ~ 1 hour
- Cooling System
 - \circ Mass ~ 200g
 - $\circ \quad \text{Power} \sim 25 \text{ W}$
 - Fits in 3U Cubesat

Daylight Considerations


Return 44

Launch Repository

Propellant Storability


Propellant Type	Propellant	Storability	Sea Level Specific Impulse (seconds)
Solid	Composite HTPB	5-20 yr storage in chamber	280-300
Liquid Bi-propellant (Hypergolic)	Hydrazine/UDM, NTO	Stable Fuel Storage	290-310
Monopropellant	Hydrazine	Over 15 year storage	202-235

Delta-V for Phasing Maneuvers

- Assuming satellites are released one at a time by a single upper stage that performs the phasing
- Times could be significantly reduced if each satellite had propulsion

Delta-V assistance from Earth's Rotation

Inclination Ranges from Existing Launch Pads

Launch Site	Location	Average Inclination Range (degrees)	
Cape Canaveral	28.5 N, 81.0 W	25 - 55	
Vandenberg AFB	34.7 N, 120.6 W	60 - 120	
Alcantara, Brazil	2.3 S, 44.4 W	2.5 - 110	
Satish Dhawan	13.7 N, 80.2 E	18 - 100	
Guiana Space Centre	5.2 N, 52.8 W	5 - 100	

Upper Stage Insertion Accuracy (LEO)

	Apogee	Perigee	Inclination
Falcon 9	±10km 3σ	±15km 3σ	± 0.1deg 3σ
Pegasus	±15 km 3σ	±15 km 3σ	± 0.15 deg 3σ
Vega	±15 km 3σ	±15 3σ	± 0.15 deg 3σ
Minotaur IV	± 5 km 3σ	± 5 km 3σ	± 0.1 deg 3σ
Strela	1%	1%	± 0.05 deg