
Mission Analysis and Design for Natural Disaster Relief Constellation

AERO 447-02

Mission Architecture

Disaster Occurs!

- Disaster latitude and longitude used to generate necessary information for launch and orbits
- Up to 6 communication satellites in 3 planes
- 10 Visual/Near IR and 10 Thermal IR Imaging satellites in 5 planes
- Preparation begins and launches when ready

Early Decisions

Super Trade to refined the options for both Imaging and Communications

- 1. Many, Small, No On-Orbit Propulsion
- 2. Many, Small/Med, On-Orbit Propulsion
- 3. Few, Med/Large, No On-Orbit Propulsion
- 4. Few, Large, On-Orbit Propulsion

Result of this trade was that imaging needed on-orbit propulsion and communications needed more sats and at lower altitudes than were proposed

The Breakup

Super Trade results lead to a split in Imaging and Communication constellations

- Imaging satellites needed to pass almost directly overhead, where as Communications satellites don't
- Imaging orbits could meet communication requirements with extra satellites and extra orbital planes
- Drives up satellite size, increases launch requirements, increases satellite complexity and came with no apparent benefits

Orbit Design

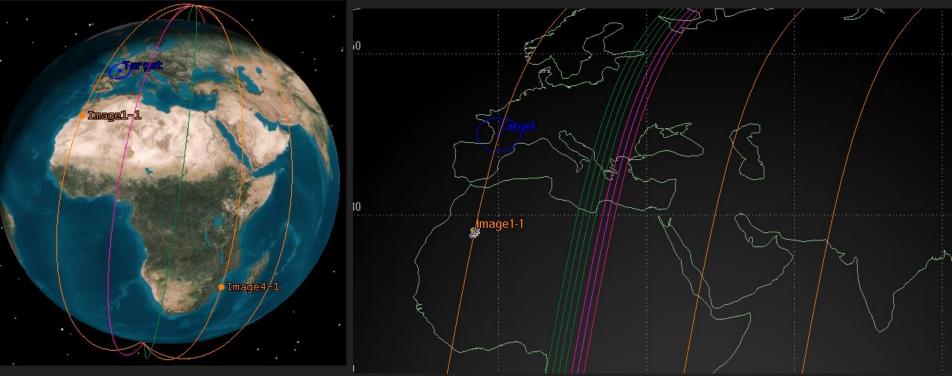
- Derived Requirements
 - Imaging:
 - 1000 km altitude limit
 - Repeat ground track
 - Comms:
 - 2900 km Range for UHF
- Other Considerations/Requirements:
 - Launch delta-v
 - Ability to meet 25% after 12 hours and 100% after 24 hours requirements
- Comm Orbit Trade
 - Low Polar, High Polar, Latitude-Matched
 - Winner: Latitude-Matched
- Imaging Orbit Trade
 - Sun-Synchronous, Polar, Lat-Matched
 - Winner: Sun-Synchronous

Imaging Constellation

Orbital Solution for Imaging

- For Latitudes of 0-83°
 - Inclination: 97.7° (Sun-synchronous)
- Special Case for Latitudes > 83°
 - Inclination: 90° (Polar)
- Areas with Limited Daylight at Winter Solstice
 - Locations past ±66° Latitude have no daylight during the winter solstice. Additionally, regions between 63° and 66° have less than 4 total hours of daylight per day
 - This region introduces large gaps between daylight pictures, of up to 20 hours
 - Solution: Nighttime TIR Imaging can reduce gaps to ~8 hours
- Delta-V Budget

Maneuver Type	Phasing	Station-Keeping (6 months)	De-Orbit	Total (w/o margin)
Delta-V (m/s)	723	318	144	1185


Orbital Solution for Imaging: Planes

Plane	Auxiliary 1	Base 1	Base 2	Auxiliary 2	Auxiliary 3
Total Number of Satellites per Plane	2	6	8	2	2
Visible/Near Infrared	1	3 4		1	1
Thermal Infrared	1	3	4	1	1
Percentage of Target Area Imaged Per Band	15%	100%		15%	15%
RAAN of Plane *	Ω°	Ω+15°	Ω+30°	Ω+45°	Ω+60°

* Dependent on Disaster Location. Spacing shown for > 4h of Daylight

Orbital Solution for Imaging

- Altitude: 560.92 km (Repeat Ground Track, 15 revs to repeat)
- Sun-Synchronous

Imaging Major Design Decisions

- Satellite Pass Capability
 - The area each satellite captures in a single pass over area
- Separate Satellites for VIS/NIR and TIR Spectrums
 - Each band has different effects on optics design
- Altitude
 - The chosen orbit affects optics, control, pass time, and number of satellites
- Type of Imaging Method
 - Which imager type is best for the ground area's geometry

Imaging Scheme

	Visible/Near Infrared (VIS/NIR)	Thermal Infrared (TIR)
Imaging Method	Pushbroom	Matrix Starer
Optics Size (Aperture/Focal) (m)	0.4 / 1.3	1.8 / 3.1
Field of View (km)	53.3 (swath width)	3.8 x 3.8
Imaged Area per Satellite (km^2)	~37500	~37500
Spectral Wavelength Bands	6	2
Total Data Captured per Pass (Gb)	193	82
Operating Temperature Range (°C)	-10 to 40	-200 to -50

5 meter resolution will be met with both systems at a max off nadir angle of 32 degrees

Requirement Considerations

Thermal Spatial Resolution Requirement

• Change from 5 m to 15 m significantly decreases design complexity

	5 m Resolution	15 m Resolution
Focal Length (m)	3.1	0.9
Aperture Diameter (m)	1.8	0.5

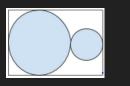
- Using resampled quality to meet requirements would decrease size and cost
- Thermal spacecraft size would then be more like the Visible/ NIR spacecraft

Satellite Area Capture Capability Trade

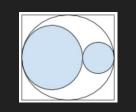
Options:

- Less than 15% of total area per pass
- 15% of total Area
- Greater than 15% of total area

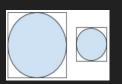
Driving Metrics: Increasing Area...


- <u>Number of satellites</u> ...decreases number of satellites needed
- <u>Sensor size</u> …**increases** sensor size
- <u>Pass Utilization</u> ...increases
 unnecessary data collected per pass

Selected: 15% of total area in one pass


Visible/Near IR and Thermal IR Separation

Options:


1. Same Spacecraft, Separate Sensors

2. Same Spacecraft, Integrated Sensor

3. Separate Spacecraft

Selected: Separate Spacecraft

Driving Metrics: Increasing Separation...

- <u>Sensor/Optic Size</u> ...integrated increases aperture size; others do not change
- <u>Dwell Time</u> ...**decreases** dwell time
- <u>Temperature Control</u> ...**decreases** thermal isolation and cost
- <u>Complexity</u> ...**decreases** complexity; less development for optics and easier pointing

Feasible Imaging Method Comparison

Options (relative motion):

Driving Metrics: Increasing Motion...

- Pushbroom (minimum)
- Push-whisk (moderate)
- Matrix Starer (maximum)

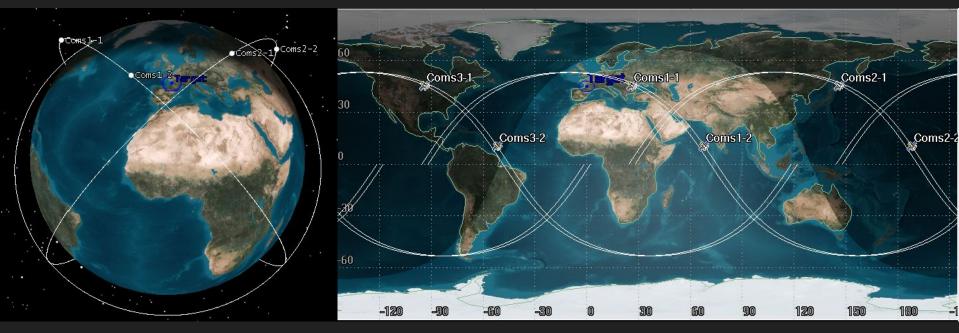
- <u>Pass Utilization</u> ...decreases unnecessary data collection
- <u>Dwell Time</u> ...decreases dwell time
- <u>Complexity</u> ...increases mechanical complexity; optical complexity is worst for push whisk and best for matrix starer
- <u>Reliability</u> ...decreases reliability

Selected: Pushbroom for VIS/NIR

Key Differences Between VIS/NIR and TIR

- 1. <u>Pointing Requirement</u> Harder to point the larger sensor
- 2. <u>Operational Delay</u> Less slewing delay because sensor sizes are larger
- 3. <u>Smear</u> Less slewing means less smearing

Selected: Matrix Starer for TIR


Imaging Communications System

- Maximum Data: 193 Gbits per satellite
- Transmitter Data Rate: 500 Mbps
 - Total Downlink Time: 6 min 40 sec
- Downlink Frequency: X band
 - based on current transmitter technology capabilities
- Ground Stations :
 - Worst case: 10
 - Mobile ground stations preferred

Communications Constellation

Orbital Solution for Communications

- Altitude: 887.7km (14 revs to repeat)
- Latitude Matching: Orbit inclination determined by coverage location latitude

Orbital Solution for Communications: Planes

- Minimum elevation angle: 15°
- Maximum slew angle: 58°

Target Latitude	Inclination	Number of Satellites	Number of Planes	Total Pass Time	RAAN Spacing of Planes
0-7°	0°	2	1	280 min	n/a
7-15°	0°	4	2	250 min	180°
15-60°	~Lat+8°	6	3	300 min	120°
60-75°	~Lat+8°	4	2	260 min	180°
75-83	90°	4	2	250 min	180°
83-90°	90°	2	1	280 min	n/a

Orbital Solution for Communications: Delta-v

Communications constellation will have delta-v budget for three types of maneuvers:

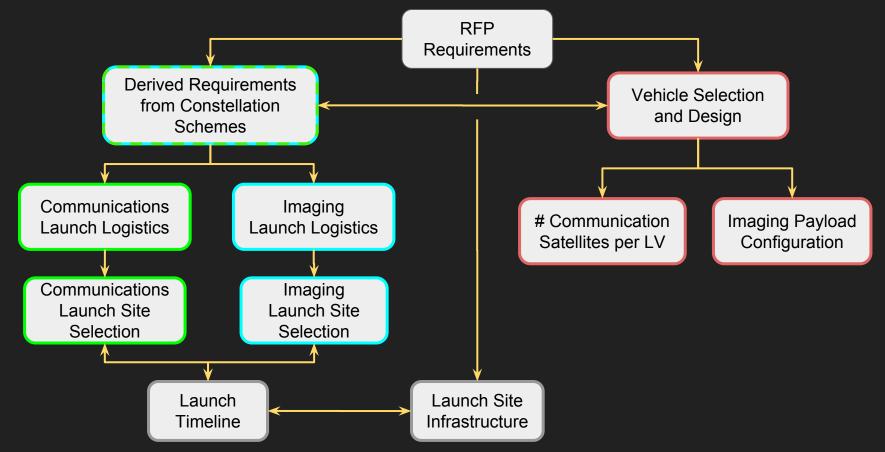
- Phasing: Second comm sat phases to 50° relative true anomaly from first sat.
 - 8 hours for phasing
- Station-Keeping: corrects altitude/inclination changes for 6 months.
- De-Orbit: Must de-orbit 25 years after mission according to regulation.

Maneuver Type	Phasing	Station-Keeping (6 months)	De-Orbit	Total (w/o margin)
Delta-V (m/s)	178	217	230	625

Repeater Communications System

• Repeater Satellite Antenna infrastructure derived from ground radio capability

• Utilizes 1-5 W UHF ground handheld radios with AFSK encoding


- Antenna Type : Helical Antenna
 - Better for UHF range
 - Wider beamwidths with lower gain
 - Lighter, simpler design, deployable

Parameters	Units	Values
Beamwidth	deg	44
Antenna Diameter	m	0.18
Antenna Length	m	0.80
Power to close link	W	1.55
Signal to noise ratio	dB	23.71

Repeater Communications System

- Comms satellites will make use of transponders for "channeling"
 - Multiple channels allows many first responders to use the comms system at once
- Comms satellite will require slewing
 - 58° max slew angle
- Communication Time Warning Scheme
 - Propagation of orbits for comms satellites will be delivered to first responders before deployment
 - Dedicate a channel to a tone system which alerts users to communication windows (warning tone/ping)
 - Constant tone to alert first responders of communications window, then a warning tone during last minute of communications

Launch System Flowdown

Launch Considerations

Build over Buy*

- Unprecedented Launch Window
- Launch Vehicle Customization
- Component Purchases Still
 Considered

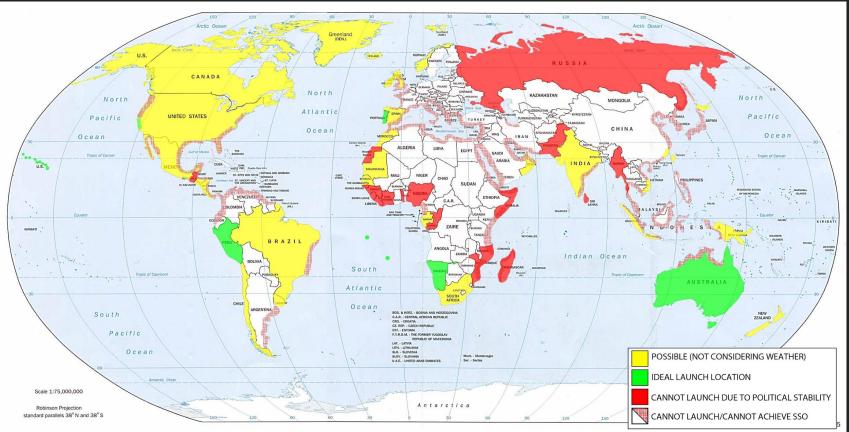
* Complete launch vehicle without launch services

Land Launch over Air or Sea

- Launch Timeliness
- Cost
- Complexity

Launch Logistics

Imaging Satellites


- 5 launch sites
- ≥ 2 launch vehicles each (redundancy not yet determined)
- 0-20% of imaging satellites operational at 12 hours

Communication Satellites

- 2 launch sites
- 2 launch vehicles each (potentially at same launch sites as imaging sites)
- ~50% of communications satellites operational at 12 hours

Total	
Minimum # of launch vehicles	14
# of launch sites	5-7

Launch Locations (Imaging)

Launch Timeline

	Comms Laun	ch Window	Comms Orbit Phasing/Maneuvers		
Launch Preparation	Imaging Launch Win		Window Imaging Orbit Phasing/Mai		
T-0	T+8	T+12	T+16	T+18	 T+24

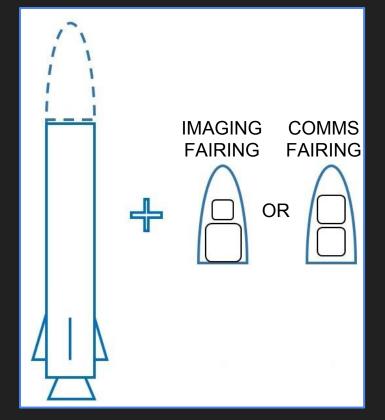
Launch Prep Activities

- Personnel to Launch Site
- Pad prep
- Satellite prep
- LV prep

Comms Launch Constraints

- Can launch as soon as the pad is ready
- Max time between 1st and last launch: 8 hrs

Imaging Launch Constraints


- Ideally launch when the plane passes over the launch site
- Max time between 1st and last launch: 10 hrs

Phasing Information

- Comms sat phasing time: ~ 8 hours
- Imaging sat phasing time: ~ 6 hours

Preliminary Launch Vehicle Configuration

- One configurable launch vehicle will be capable of supporting the imaging mission and the communications mission
 - 1 TIR & 1 VIS/NIR on each imaging launch vehicle
 - 2 communications payloads on each communications launch vehicle

Sketch to show fairings - not to scale

Launch - Moving Forward

• Phasing using launch vehicle vs. on-orbit satellite phasing

- Vehicle design (staging, propellant type, payload size constraints, etc.)
 - 5 year storage requirement will affect usable propellant types

• Launch infrastructure and operation requirements

Path Forward for Whole System

- Update Mission Architecture to reflect recent changes to the RFP
- Begin to develop on the system level as well as the subsystem level
- Refine Timeline
- Optimize design for best possible performance with current derived requirements

Questions?