

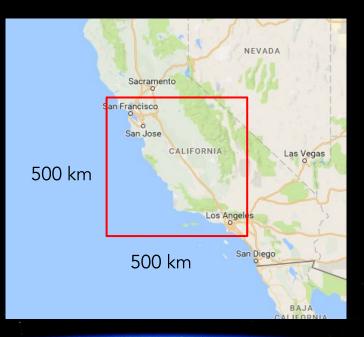
MULTI-SPECTRAL IMAGING & NETWORKING EMERGENCY RESPONSE VEHICLE ARRAY

NISSION

SECTION 1 OF 9

FORREST RODEMAN

The Customer



The Humphrey and Prudence Trickelbank Foundation was established to support disaster relief activities around the world. Their goal for this mission is to provide satellite assistance to emergency first responders on the ground.

Mission Objective

Provide recurring repeater access and multi-band images of a customer-designated 500 km x 500 km disaster Area of Interest (AOI) within 24 hours of the command time.

Schedule

- The system shall reach 25% capability within 12 hours
- The system shall have full capability within 24 hours
- The system shall have 95% capability at 6 months, End-of-Life
- The system cannot be deployed in orbit prior to time of command
- The constellation must deorbit within 5 years after mission completion

Imaging

- Provide visible (Vis), near infrared (NIR), and thermal infrared (TIR) images of AOI with a 5 meter per pixel resolution
- Daylight picture of any point in the AOI 4 times a day
- Images must be provided to the customer as quickly as possible
- Maximum time between daylight images of 8 hours

Communications

- The system shall provide beyond line-of-sight communications capability to first responders
- The system shall support entire AOI
- The system shall be compatible with existing UHF communications systems
- The system shall provide 10 minutes of repeater access every hour
- The maximum time without repeater access is 120 minutes
- The minimum communications window is 3 minutes

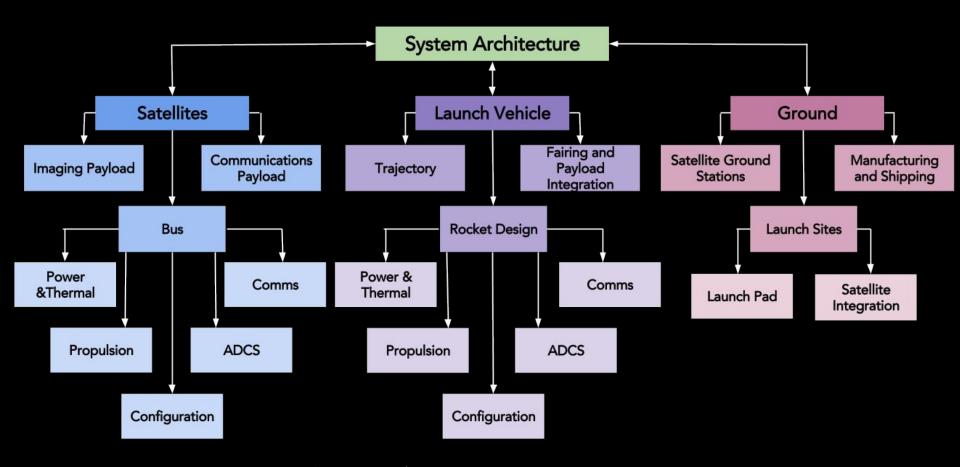
Adjusted Mission Requirements

Imaging

- 100 m resolution for Thermal IR of 25% of AOI
- TIR decided by customer on day of launch
- 3 additional images of 15% of the AOI required for 0-50 degrees latitude

Communications

- The system shall provide repeater capability for 240 minutes/day
- The maximum time without repeater access is 120 minutes



Launch/Ground

- The systems shall operate in politically stable locations
- The systems shall comply with applicable U.S. and international regulations
- The system must be capable of at least 5 years of storage prior to launch
- The system cannot utilize existing government or military infrastructure
- All legal and regulatory obstacles will be handled by the customer

Class Organization

CO.S. CARACT

Mission Design

Considerations:

- 1. Orbit and Constellation Design
- 2. Vehicle Capability
- 3. Satellite and Launch Vehicle Design

Orbital Altitude

Metric	LEO	MEO	GEO
Time to Orbit			
Radiation			
Payload Requirements			
Deorbit			
Number of Vehicles			

Outcome: **LEO**

Orbital Variability

Metric	Variable Orbits	Complete Global Coverage
Number of Satellites		
Number of Orbital Planes		
Number of Launch Sites		
Wasted Coverage		
System Complexity		
Launch Vehicle Requirements		

Outcome: Variable Orbits

100

Distribution Scheme

Metric	LV Distribution	Satellite Distribution
Propellant required		
Launch Vehicle Complexity		
Satellite Complexity		

Outcome: Satellites will Distribute Themselves

Capability Allocation

Metric	Same Satellite	Different Satellite
Satellite Complexity		
Optimal Orbit Differences		
Number of Vehicles		

Outcome: Separate Comms and Imaging Satellites

Imaging Spectral Band Allocation

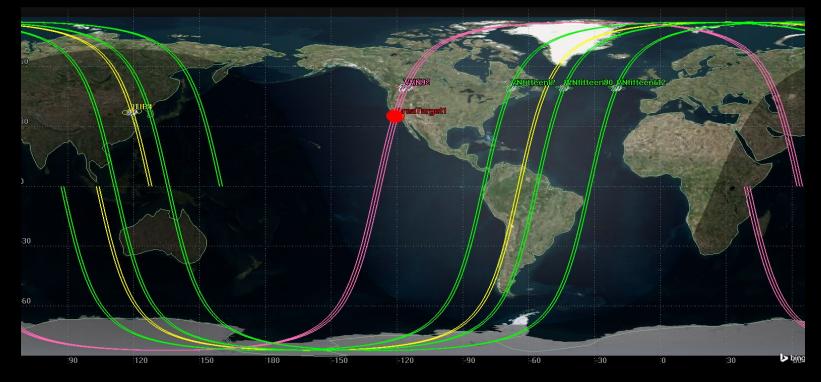
Metric	Separate Imaging Satellites	Same Imaging Satellite
Thermal Imaging Day of Launch Decision		
Number of Launches		
Coverage Requirements		
Satellite Complexity		

Outcome: Different satellites for Visible/Near IR and Thermal IR

Common Bus

Metric	Dedicated Bus	Common Bus
Development Cost		
Manufacturing		
Satellite Operations Differences		
Required Launch Vehicle Capability		

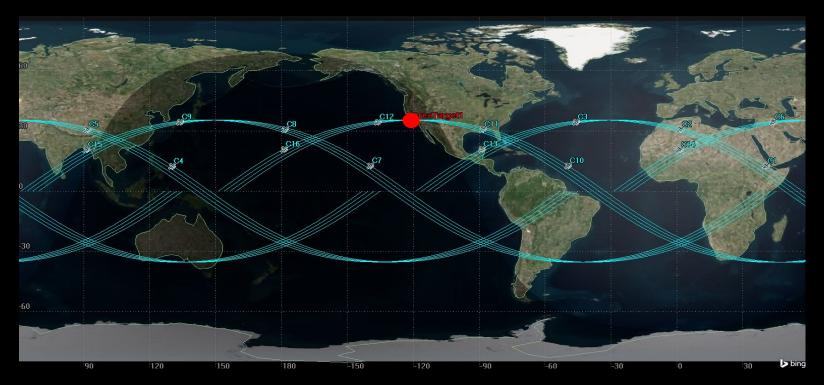
Outcome: Satellites with a Common Bus


Design vs. Buy Launch Vehicle

Metric	Design & Build	Buy Existing
Development Cost		
Production Cost		
Mission Feasibility		
Customizability		

Outcome: Design Launch Vehicle

Imaging Architecture Driving Case



- 28 Imaging Satellites
 - 12 for Vis/NIR AOI Image
 - 12 for Vis/NIR 15% AOI Images
 - 4 for 25% TIR Image

Communications Architecture

Driving Case

- 16 satellites
 - Orbital scheme depends on latitude of target
 - Satellites distributed in true anomaly

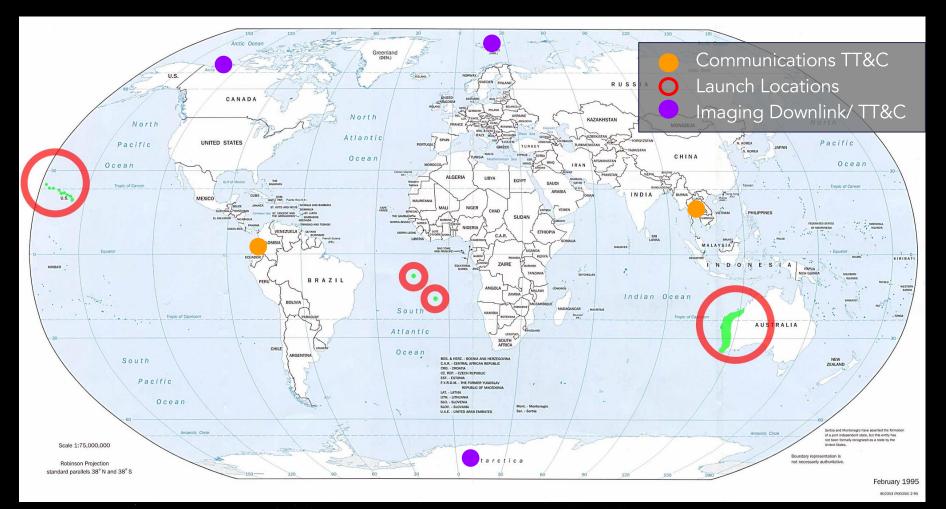
System Introduction

Common Bus

Interchangeable Payloads

Vis/NIR Payload

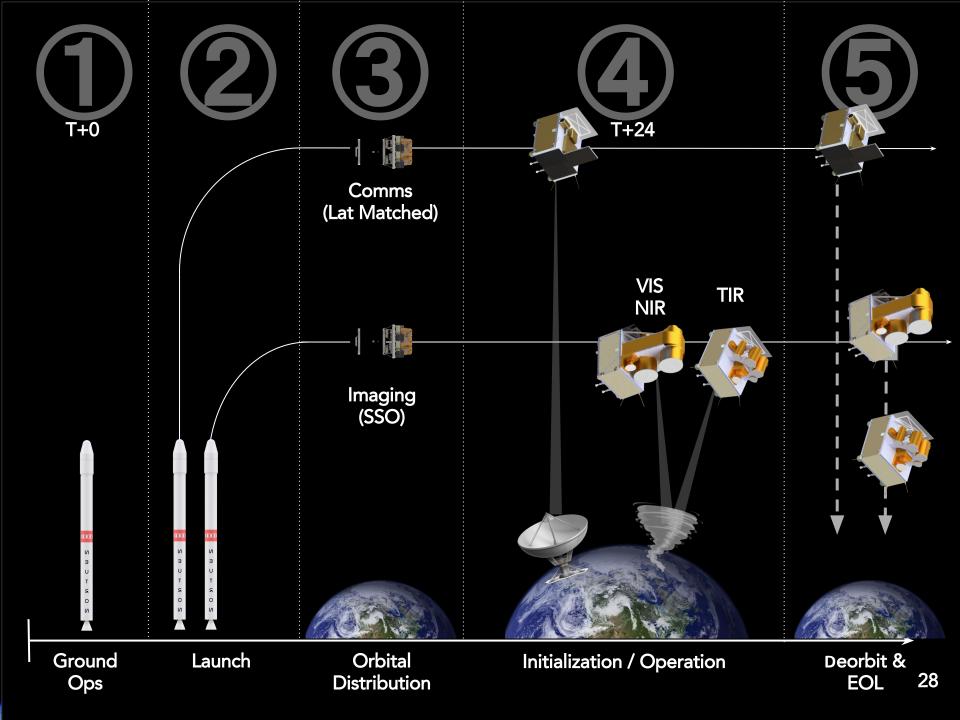
System Summary



Vis/NIR X 24 29 kg TIR X 4 N 24 kg ε U т Comms 2 0 X 16 N 16 kg

LV X 11 ^{28 tonnes}

Ground Operations Locations



26

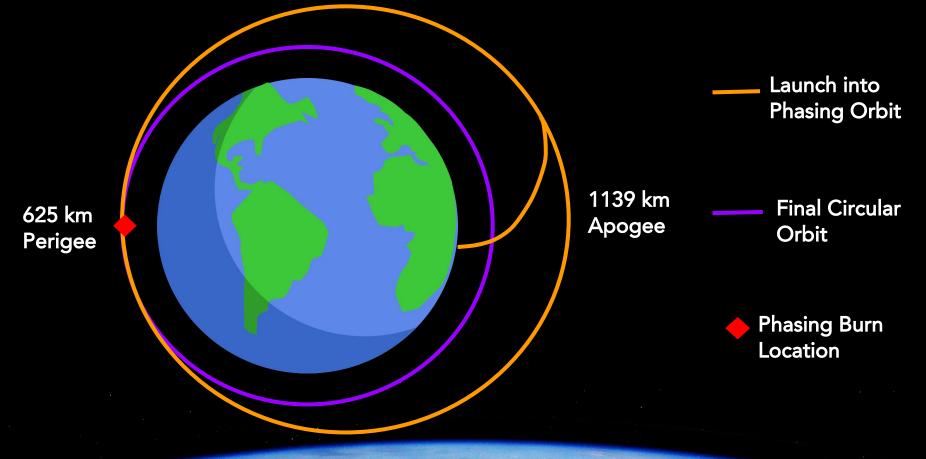
SECTION 3 OF 9

MEGAN RUND

- Most critical portion of the mission
- Must launch 44 satellites, distribute them to the correct locations, and activate payloads
- All launches and maneuvers carefully planned in order to reach 25% capability in 12 hours and 100% capability in 24 hours

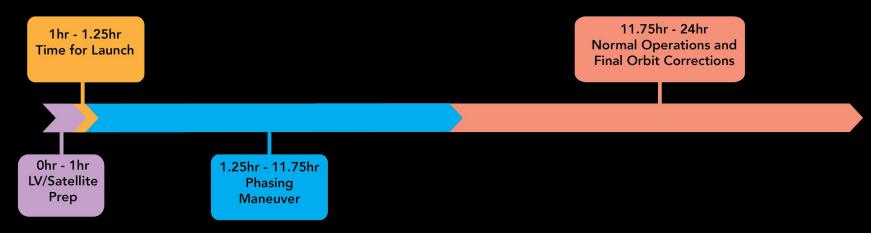
Communications Launches

- First set of satellites can launch as soon as launch vehicle is ready for liftoff
- Next sets of satellites must be launched so that planes are approximately equally spaced in RAAN
 - Must wait for launch sites to pass under desired plane before launch
- Satellites require 40° true anomaly spacing between each satellite
 - Launch into phasing orbit and burn into nominal one at a time

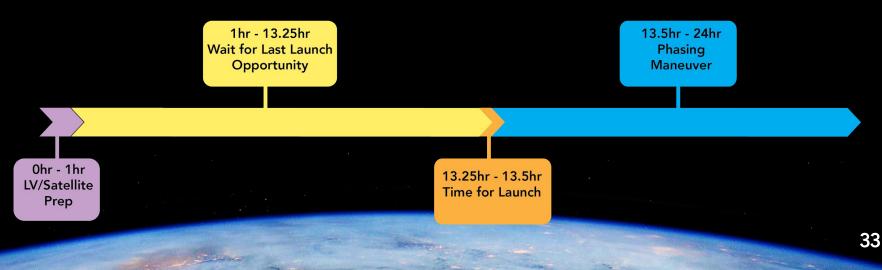


Communications - Order of Events

- 1. Wait for available launch plane
- 2. Launch into phasing orbit defined by 40° true anomaly spacing
- 3. Deploy from launch vehicle 10 minutes apart
- 4. Complete phasing orbits
 - Activate all satellite systems
 - Correct perigee
- 5. One satellite burns into nominal orbit every 2 phasing orbits

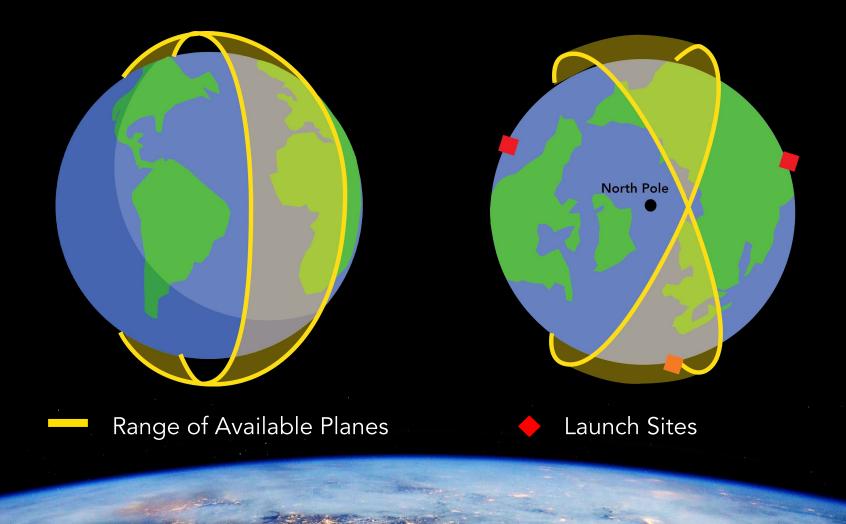


Communications - Phasing



First Communications Plane to Orbit

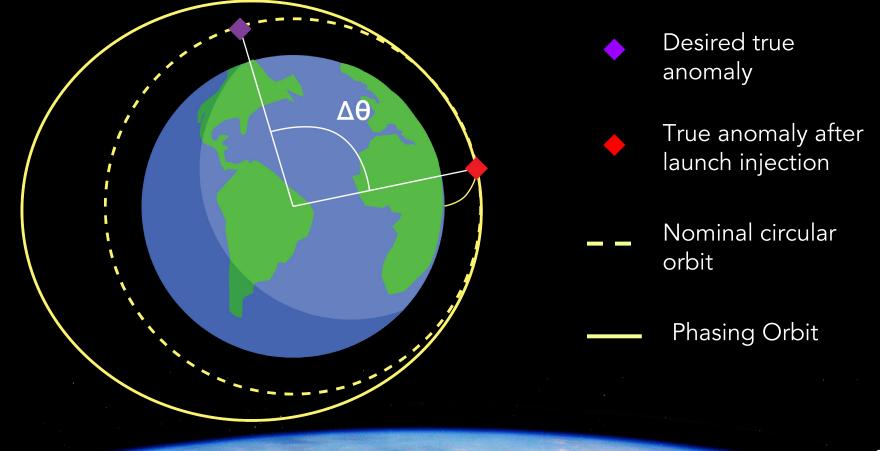
Last Communications Plane to Orbit



Vis/NIR Imaging Launches

- Timing difficulties because satellites can only launch into planes that will pass over in daylight
 Can be launched into any RAAN in this range
 - Spacing between sets determined by first available launch

Vis/NIR Imaging - Launch Planes

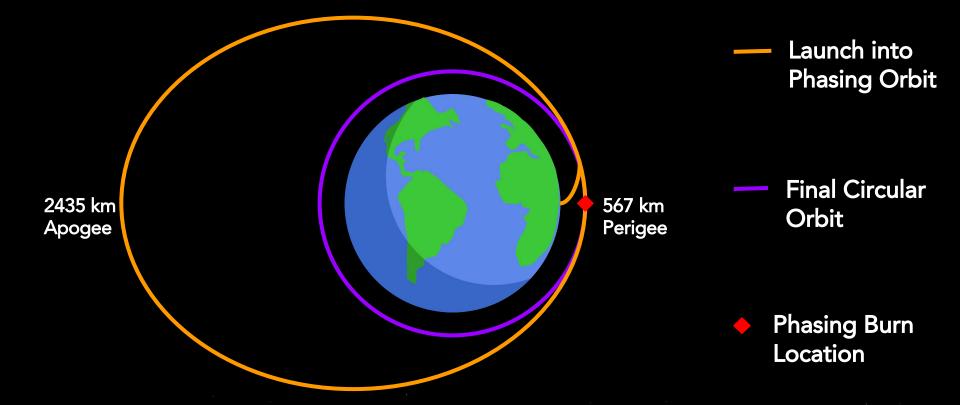


Vis/NIR Imaging Launches

- Satellites must be at a specific true anomaly in order to pass over the target
 - Launched into phasing orbit that is determined by error in true anomaly of launch and desired true anomaly
 - 15% image planes are allowed more time to phase in order to complete RAAN change maneuver

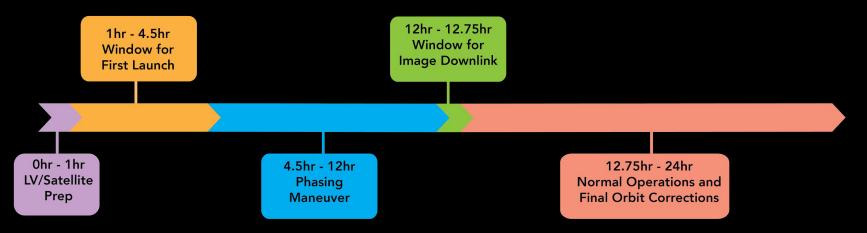
Vis/NIR Imaging - Phasing Orbit Determination

Order of Imaging Launches


- Imaging planes must be launched in specific order to reach 12 and 24 hour requirements
 - 1. Full Image Plane
 - 2. 15% Image Plane
 - 3. 15% Image Plane
 - 4. 15% Image Plane
 - 5. Full Image Plane
 - 6. Full Image Plane

Vis/NIR Full Image - Order of Events

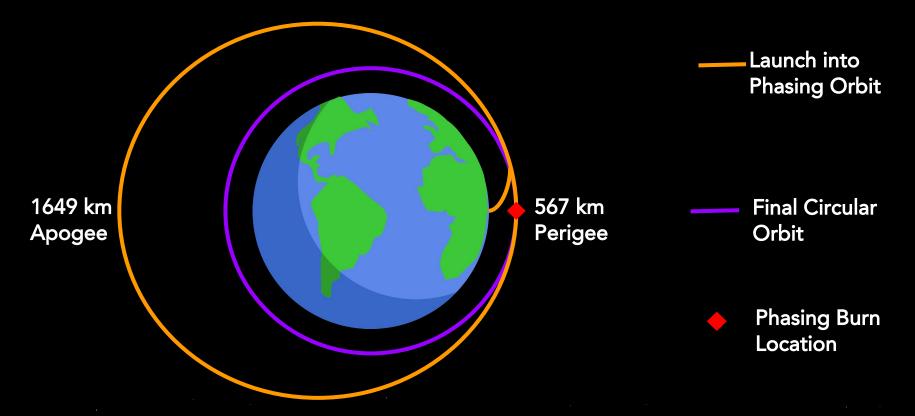
- 1. Wait for first available launch plane
- 2. Launch into phasing orbit defined by time of launch
- 3. Deploy from launch vehicle 10 minutes apart
- 4. Complete 4 phasing orbits
 - Activate all satellite systems
 - Correct apogee and perigee
- 5. Burn into nominal circular orbit, ready to take image
- 6. Correct inclination, final altitude and true anomaly



Worst case phasing maneuver to correct for 300° error in true anomaly

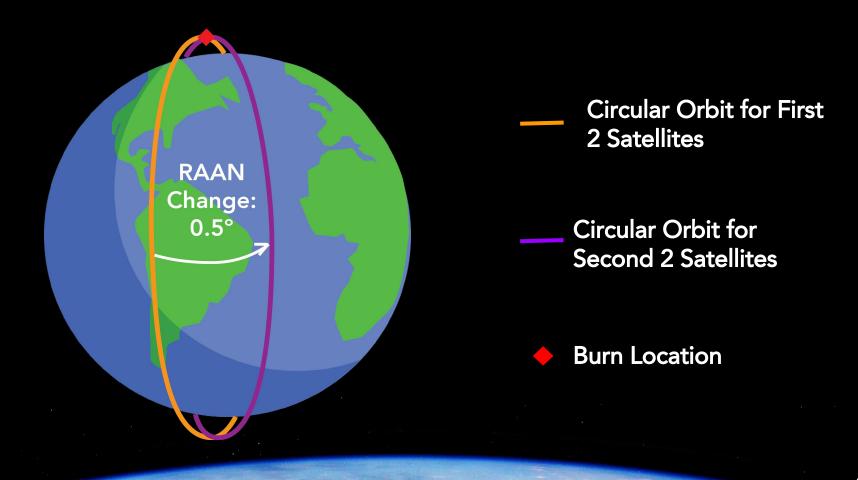
First Full Image Plane to Orbit

Last Full Image Plane to Orbit

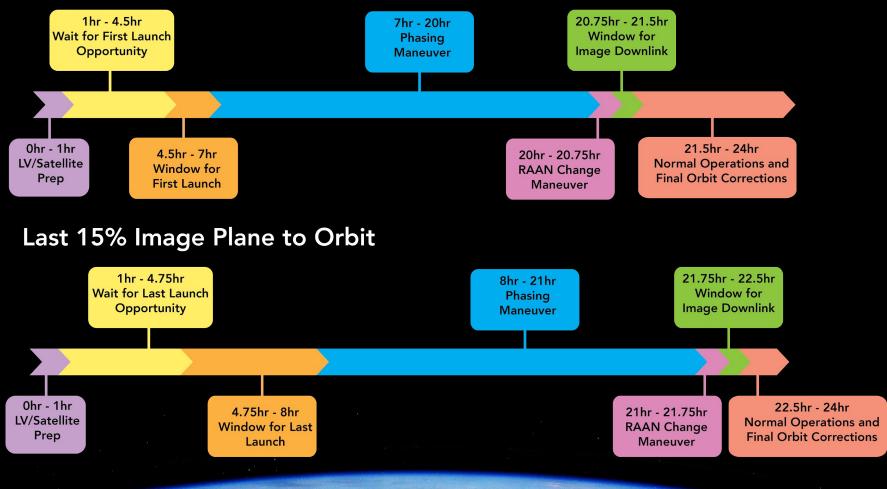


Vis/NIR 15% Image - Order of Events

- 1. Wait for first available launch plane
- 2. Launch into phasing orbit defined by time of launch
- 3. Deploy from launch vehicle 10 minutes apart
- 4. Complete 7 phasing orbits
 - Activate all satellite systems
 - Correct apogee/perigee
- 5. Burn into nominal circular orbit
- 6. Two satellites complete RAAN change, ready to take image
- 7. Correct inclination, final altitude and true anomaly


Vis/NIR 15% Images - Phasing

Worst case phasing maneuver to correct for 300° error in true anomaly

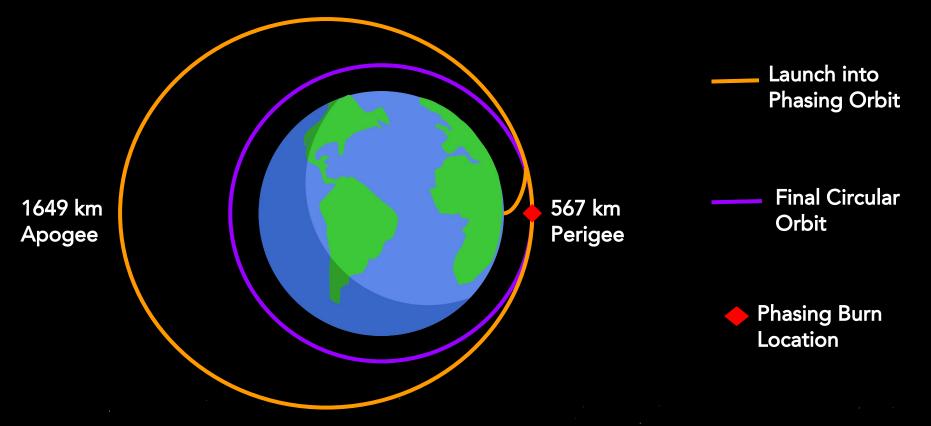


Vis/NIR 15% Imaging - RAAN Change

First 15% Image Plane to Orbit

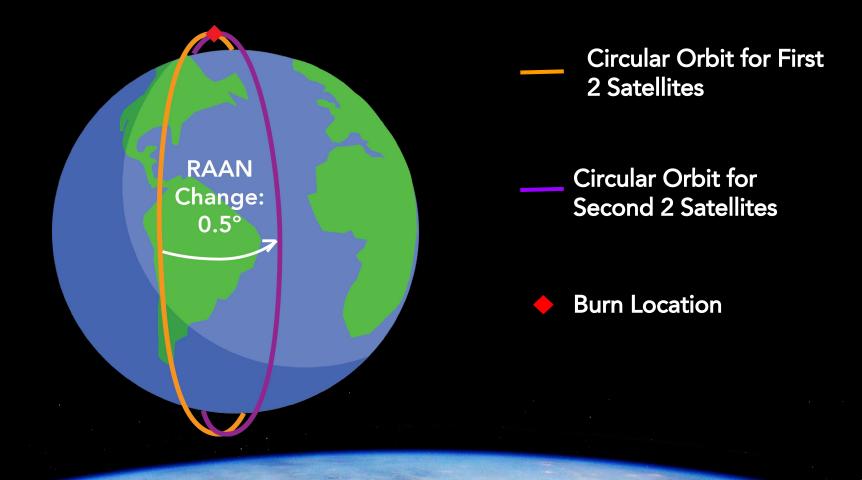
TIR Imaging Launches

- Customer may choose to launch TIR satellites at any time
- Satellites can launch at any time since they are capable of taking pictures night and day
 - Customer has ability to choose, but this will create launch timing constraints
- Satellites must be at a specific true anomaly in order to pass over the target
 - Launched into phasing orbit that is determined by error in true anomaly of launch and desired true anomaly

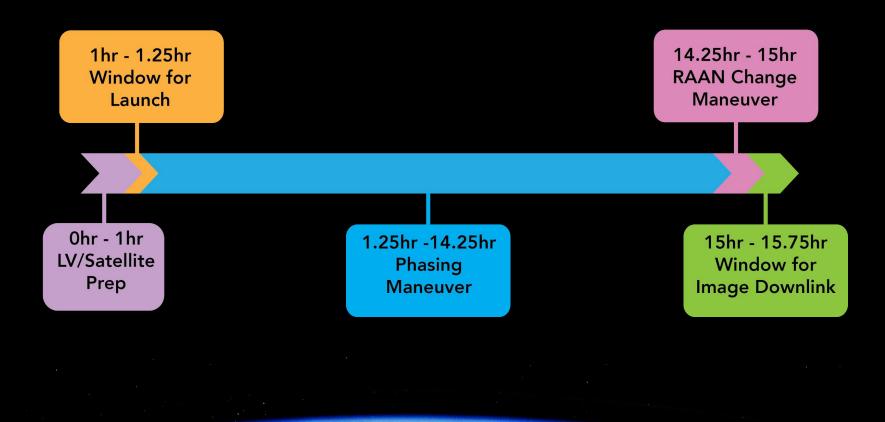


TIR 25% Image - Order of Events

- 1. Can launch at any time
- 2. Launch into phasing orbit defined by time of launch
- 3. Deploy from launch vehicle 10 minutes apart
- 4. Complete 7 phasing orbits
 - Activate all satellite systems
 - Correct apogee and perigee
- 5. Burn into nominal circular orbit
- 6. 2 satellites complete RAAN change, ready to take image
- 7. Correct inclination, final altitude and true anomaly


TIR 25% Image - Phasing

Worst case phasing maneuver to correct for 300° error in true anomaly


TIR 25% Image - RAAN Change

TIR Image Plane to Orbit

CONOPS SYSTEM RESPONSE TIME

MAX ROSENBERG

Disaster Time and Location Sensitivity

Two big challenges in meeting initial 12/24 hour requirements

- 1. No systems pre-deployed in orbit
- 2. Disaster location and time are not known ahead of time

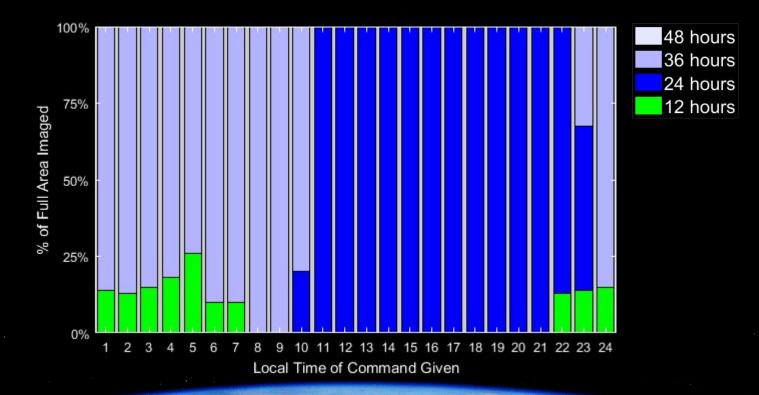
How does our system response time compare for different disaster scenarios?

Scenario 1: San Luis Obispo

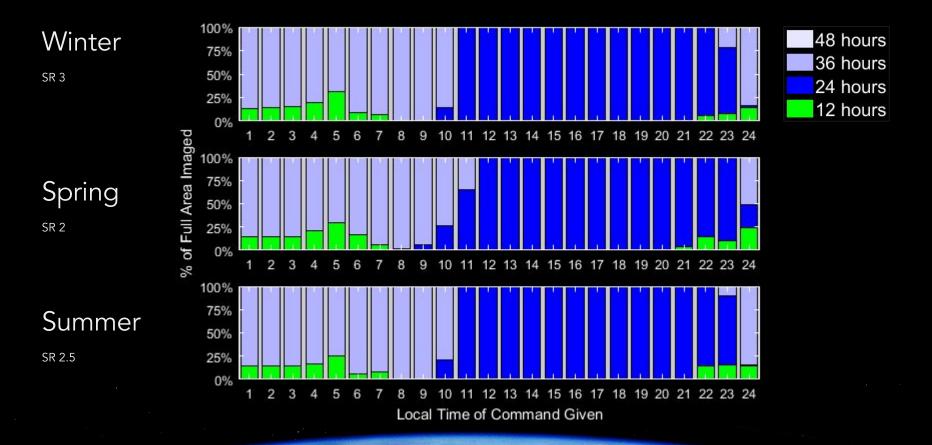
35.28° N, 120.66° W - June 1, 2017 - 10:30 PM (05:30 UTC)

Plane	Launch Time (hr)	Operational Time (hr)	First Pass Time (hr)	First Downlink Time (hr)
Full	1.1	8.7	16.5	16.6
15%	1.3	12.7	16.7	16.8
15%	1.4	13.7	16.8	17.1
15%	1.6	13.7	17.0	17.2
Full	1.7	9.2	17.2	17.3
Full	2.3	8.5	11.2	11.6

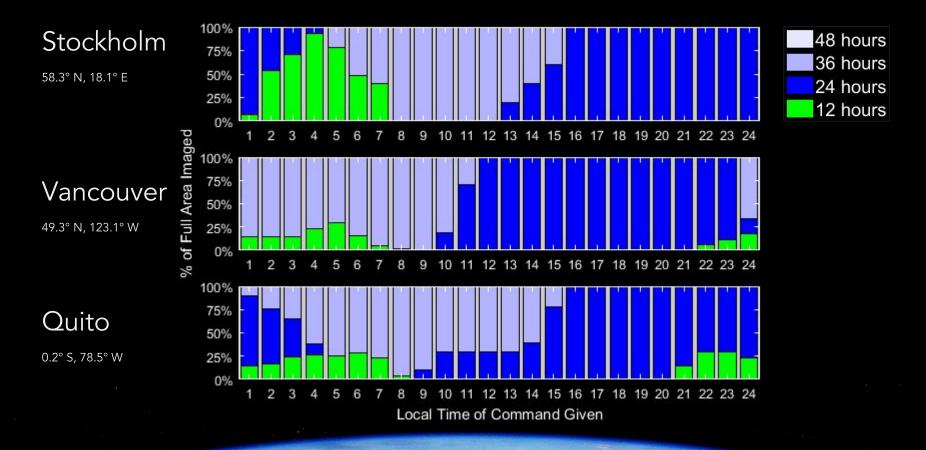
Scenario 2: San Luis Obispo


35.28° N, 120.66° W - June 2, 2017 - 9:30 AM (16:30 UTC)

Plane	Launch Time (hr)	Operational Time (hr)	First Pass Time (hr)	First Downlink Time (hr)
Full	1.0	8.1	29.1	29.4
15%	1.1	13.0	29.3	29.8
15%	1.3	13.6	29.4	30.1
15%	1.5	13.3	29.6	29.8
Full	1.7	9.0	29.8	29.9
Full	2.4	9.0	24.1	24.8


Scenario 3: San Luis Obispo

35.28° N, 120.66° W - June 2, 2017



San Luis Obispo - Various Times of Year

Various Locations - March 21,2017

BREAK

58

Break Trivia

What is the record for most satellites launched aboard a single launch vehicle?

- a. 34
- b. 63
- c. 88
- d. 104

Break Trivia

In February, the Indian Space Agency launched 104 small satellites aboard the Polar Satellite Launch Vehicle.

Outline

- System Requirements
- Major Trades
- Satellite Operations
- Optical Payloads
- Data Handling
- ADCS
- Power
- Thermal
- Overall System

IMAGING SYSTEM REQUIREMENTS

WILL MCGEHEE

63

System Requirements

Requirements Flowdown

RFP and Architecture Requirements

- Spectral Regimes
- Image Resolution
- Daily Images
- Capability Allocation Trade

Imaging Constellation Requirements

- Orbit regime
- Number of satellites
- Method of capturing images

Imaging Satellite Design

- Payload design
- Operations
- Subsystem design

System Requirements

- Image Vis, NIR, and TIR bands
- Resolution
 - Vis/NIR 5 m per pixel
 - TIR 100 m per pixel
- Vis/NIR
 - 1 daylight image of entire AOI each day
 - 3 daylight images of 15% squares of AOI (only below 50°)
- TIR (if deemed necessary by customer)
 Up to 25% of AOI composed of a minimum of 5% squares

IMAGING MAJOR TRADES

WILL MCGEHEE

Trade	Outcome
Orbits	Sun-sync repeat ground track
Sensor Type	Pushbroom Scanner
Satellite Capability	Vis/NIR: 62.6 km swath TIR: 153.6 km swath
Number of Imagers per Satellite	Vis/NIR: 2 Imagers TIR: 4 Imagers

Orbits

Option	Pros	Cons
Latitude Matching	Prograde orbit	Multiple day revisit time More satellites required Unfavorable pass orientation
Sun-Synchronous	Constant local time Favorable pass orientation	Multiple day revisit time More satellites required Retrograde orbit
Sun-Synchronous Repeat Ground Track	Constant local time 1 day revisit time Less satellites required Favorable pass orientation	Very Specific orbits required Retrograde orbit

Outcome: Sun-sync RGT orbits

Sensor Type

Option	Pros	Cons
Push-Whisk	Very small detector required Very large swath-width	Very short dwell times Mechanical complexity
Matrix	Longer dwell times Area capture	Large detector required Small swath-width
Pushbroom	Small detector required Mechanically simple	Shorter dwell times

Outcome: Pushbroom Scanner

Payload Capability

Option	Pros	Cons
Small Swath-Width	Smaller line detector array Less power, mass, etc. Lower imager complexity	Most satellites required
Large Swath-Width	Fewer satellites required	Larger line detector array More power, mass, etc. Higher imager complexity
Balanced Design	Balanced metrics	More satellites required

Outcome: **Balanced Design** Vis/NIR: 62.6 km swath, TIR: 153.6 km swath

Imager Count per Satellite

Option	Pros	Cons
1 Imager for Vis/NIR 2 Imager for TIR	Less power, mass, etc.	More satellites required Infeasible with trade decisions
2 Imagers for Vis/NIR 4 Imagers for TIR	Fewer satellites required Feasible with trade decisions	More power, mass, etc.
More Imagers	Fewest satellites	More power, mass, etc. Higher risk

Outcome: 2 Imagers for Vis/NIR 4 Imagers for TIR

IMAGING SATELLITE OPERATIONS

WILL MCGEHEE

Day in the Life

Initial Operations

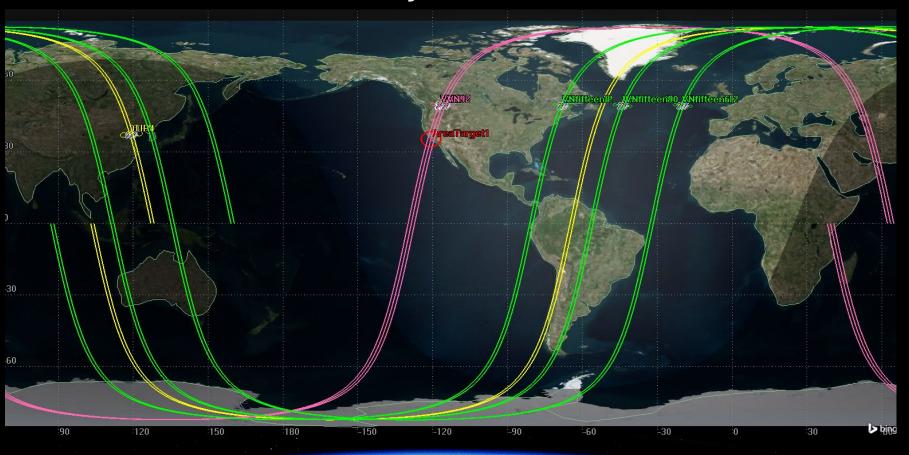
- Initialization
- Phasing and orbital correction burns
- Sensor calibration

Daily Operations

- Imaging the target areas
- Downlink image data to ground station
- TT&C
- Sun tracking
- Maneuvers and pointing

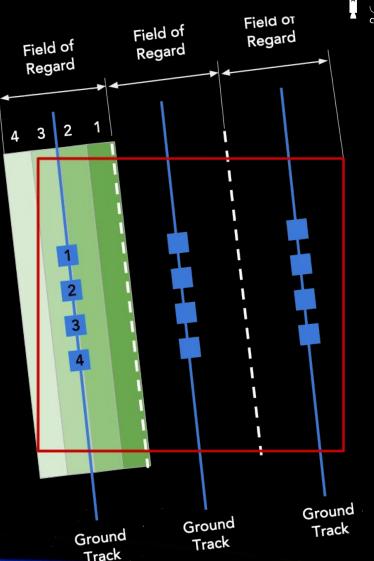
Orbits Overview

- Full Image Groups (Vis/NIR)
 - \circ 3 planes with 4 sats per plane
- 15% Groups (Vis/NIR) and 25% Group (TIR)
 - 2 planes with 2 sats per plane
 - Vis/NIR has 3 of these groupings to take the 3 15% images
 - TIR has 1 of these groupings to take the 25% image



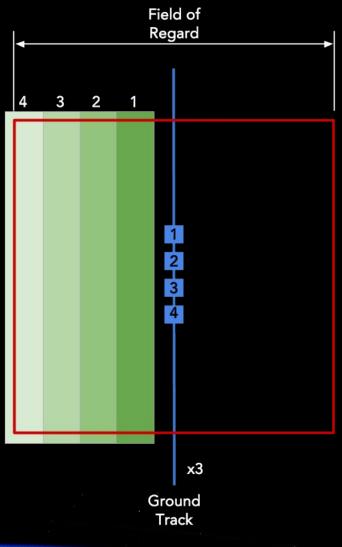
Orbits: Vis/NIR Summary

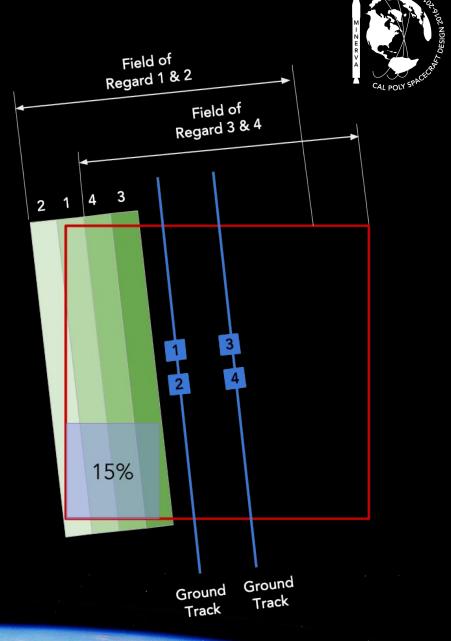
Latitude	0° - 50°	50° - 70°	70° - 90°
Orbit Type	Sun-Synchronous Repeat Ground Track	Sun-Synchronous Repeat Ground Track	Polar Repeat Ground Track
Altitude	567 km	567 km	554 km
Inclination	97.7°	97.7°	90°
No. of Planes	9		3
Total No. of Satellites	24	12	



Orbits: Vis/NIR Summary

Vis/NIR Full Image -Sun-Synch


- Max off-nadir slew: 13.5°
- Swath width: 62.6 km
- Overlap: 3 km between swaths (5% of swath)
- Planes spaced in RAAN by launch availability


Vis/NIR Full Image - Polar

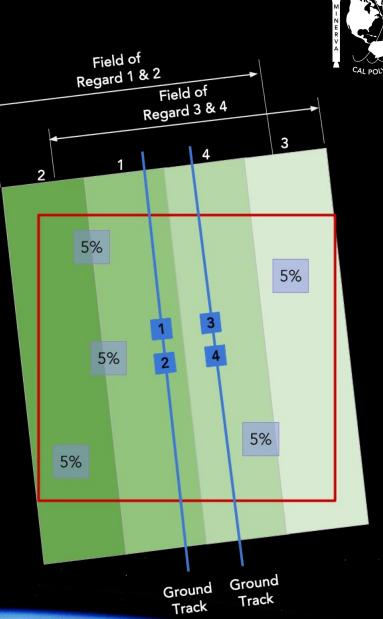
- Max off-nadir slew: 20.4°
- Swath width: 62.6 km
- Overlap: 3 km between swaths (5% of swath)

Vis/NIR 15% Image

- Max off-nadir slew: 18.5°
- Swath width: 62.6 km
- Overlap: 3 km between swaths (5% of swath)
- Planes spaced in RAAN by about 0.5°

Orbits: TIR Summary

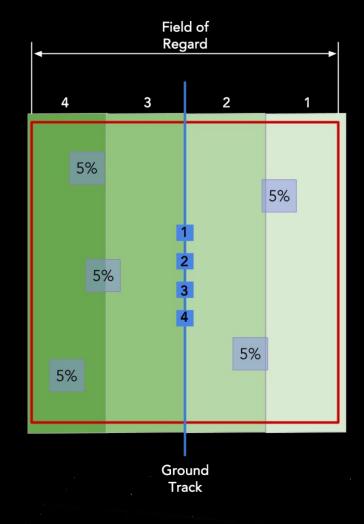
Latitude	0° - 70°	70° - 90°
Orbit Type	Sun-Synchronous Repeat Ground Track	Polar Repeat Ground Track
Altitude	567 km	554 km
Inclination	97.7°	90°
No. of Planes	2	
Total No. of Satellites	4	



Orbits: TIR Summary

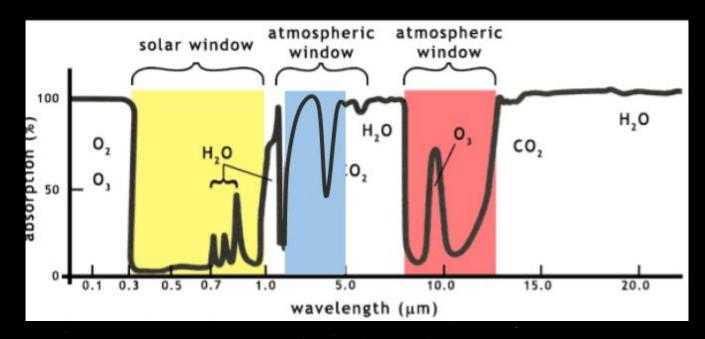
TIR 25% Image -Sun-Synch

- Max off-nadir slew: 14°
- Swath width: 153.6 km
- Overlap: 3 km between swaths (2% of swath)
- 25% could be divided into as many as five areas
- Planes spaced in RAAN by about 0.5°



TIR 25% Image - Polar

- Max off-nadir slew: 16°
- Swath width: 153.6 km
- Overlap: 3 km between swaths (2% of swath)
- 25% could be divided into as many as five areas


IMAGING VIS/NIR PAYLOAD

WILL MCGEHEE

Spectral Regimes

- Visible: 400 700 nm
- Near IR: 700 1000 nm

Design Considerations

- Pushbroom scanner needs a fast optical system with adequate performance
- Optical telescope needs to be capable of capturing our swath-width
- Reliability and complexity of chosen design

Telescope Design

- Cassegrain (Ritchey-Chretien) design
- Field correcting lens system
- 18 cm Ø x 36 cm overall
- 3 kg total mass

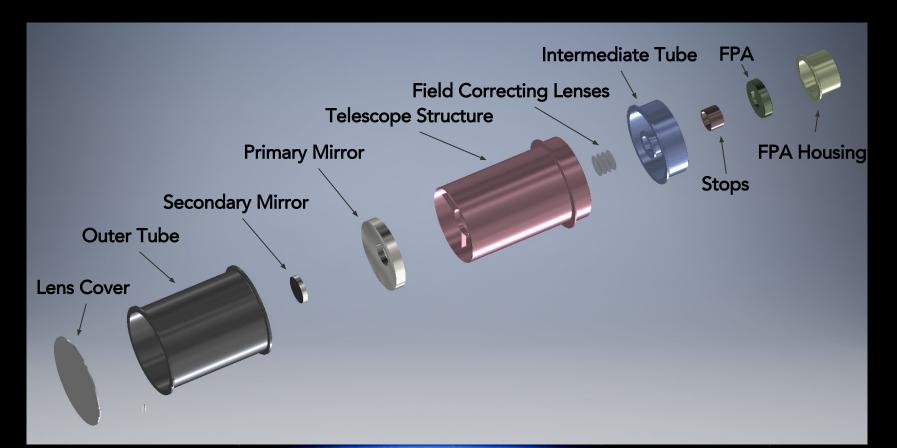
Optics Details

- 3.2° field of view
- 65 cm EFL
- F#/5
- 14.1 cm Ø primary mirror
- 5.5 cm Ø secondary mirror

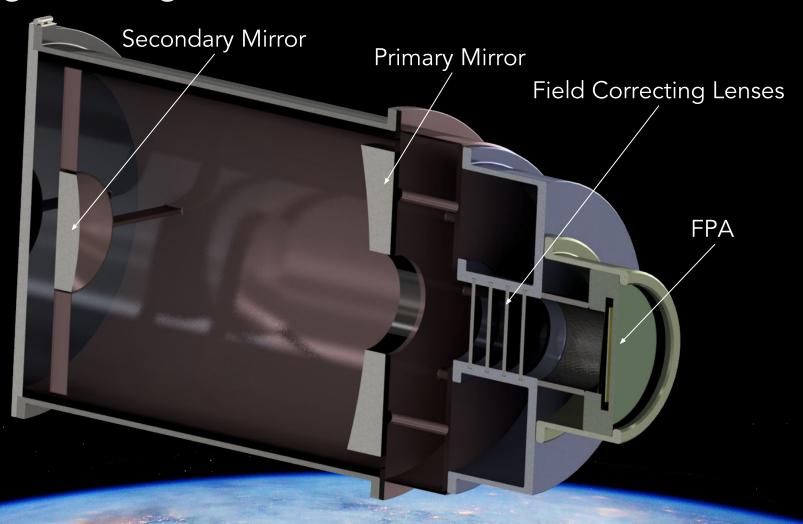
87

Focal Plane Array (FPA)

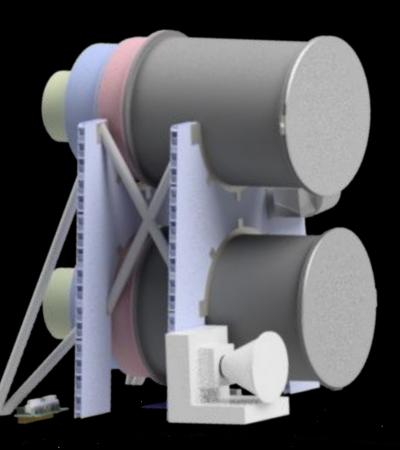
- CMOS line scanner
- Deposited bandpass filters
- 7300 pixels per band
- 3.7 cm detector length


Performance

- 8 bits per pixel
- Over 100:1 SNR
- 14 W each

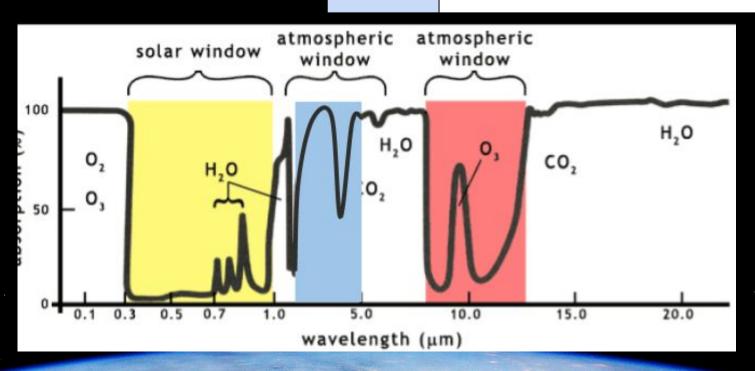

Band	Usage
<u>Visible Band 1</u> 400-500 nm	Blue
<u>Visible Band 2</u> 500-600 nm	Green
<u>Visible Band 3</u> 600-700 nm	Red
<u>NIR Band</u> 800-1000 nm	Vegetation, Water

Imager Configuration


Imager Configuration

Imager Configuration

IMAGING TIR PAYLOAD


HARRISON LAMBERT

Thermal Infrared (TIR)

- Spans 700 nm 1 mm
- Measures emitted heat

> 12 μm Atmospheric attenuation - CO₂
 5-8 μm Atmospheric attenuation - H₂O
 < 3 μm NIR and Short-Wave Infrared

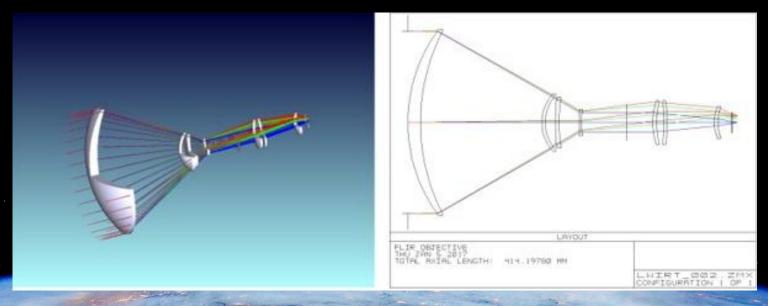
What Do You See in MWIR & LWIR?

Fires, Floods, Storms,
 Volcanoes,

Earthquakes

• 10-500mK resolution

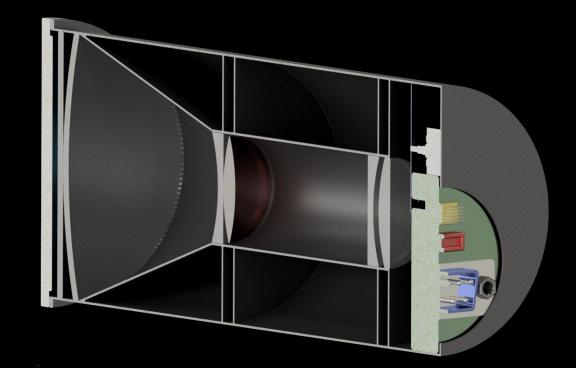
Bands	Usage
<u>MWIR Band 1</u> 3-4.4µm	Burning Plants
<u>MWIR Band 2</u> 4.4-4.6μm	Clouds
<u>MWIR Band 3</u> 4.6-5µm	Tropical Storms
<u>LWIR Band 4</u> 8-9µm	Surface Temperatures
<u>LWIR Band 5</u> 9-10µm	Trace Gases
<u>LWIR Band 6</u> 10-11µm	Earthquakes
<u>LWIR Band 7</u> 11-12µm	lce, Ash


Design Considerations

- Wavelengths force separate optics per spectral domain
- No reasonable optic covers the full 15.4° field of view (FOV) at 100m resolution
 - Reflective elements have trouble above 7°
- Refractor can cover FOV with two optics
 - Results in 4 imagers for TIR payload
- Material changes to handle space environment

Designing A Refractor

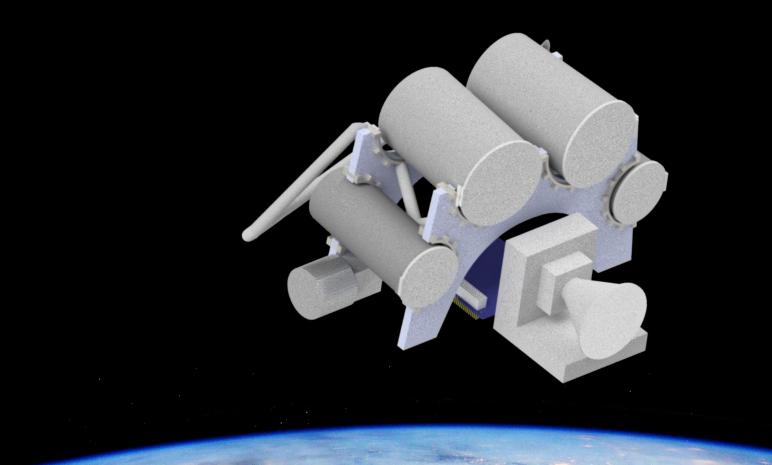
- No design software, so scaling method suggested by the ISRO was used
 - Three independent sources
- Removed vignette and aberrations for clear picture


Focal Plane Array (FPA)

- Uncooled Pyroelectric
 - Cooled sensors cryogen, mechanical, or electrical issues
 - Other uncooled sensors were too slow or experimental
- Operates on thermal differential
- Requires a chopper to reset the temperature
 - Spinning disc design is most proven
- 865 pixels/band; 11 bits/pixel

MWIR - 5 Lens Refractor


- F#/2.0
- 5.5 cm EFL
- 6cm Ø x 14.4cm
- 500 grams each
- 1.65 W each

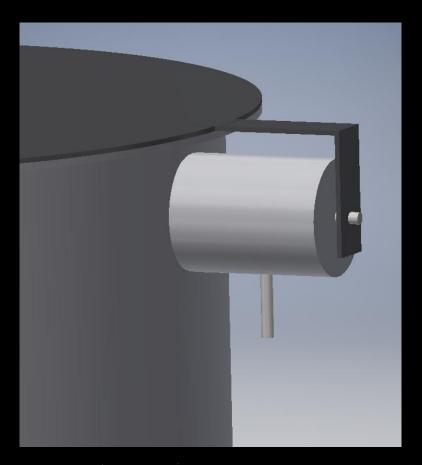

LWIR - 8 Lens Refractor

- F#/1.6
- 10.3 cm EFL
- 8.7cm Ø x 12.9cm
- 600 grams each
- 1.65 W each

Configuration

Imaging Payloads

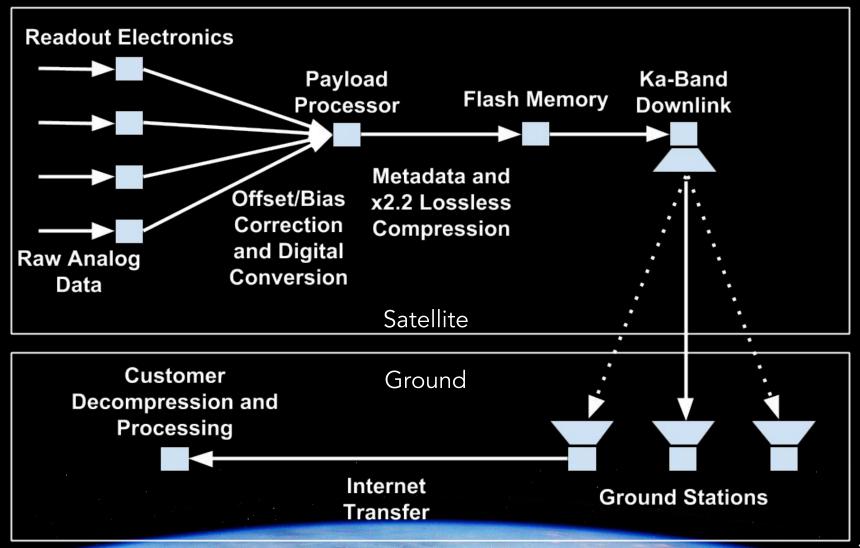
Calibration


- Boresight calibration on orbit
- Digital calibrations on orbit
 - LED's test responsivity and accuracy
 - TIR: hot grid tests thermal bleed across pixels
 - \circ TIR: hot corners checks vignetting and ensures FOV
- Additional blackbody daily calibration for TIR
- Measurements stored on FPA electronics for offset and bias adjustment

Imaging Payloads

Lens Covers

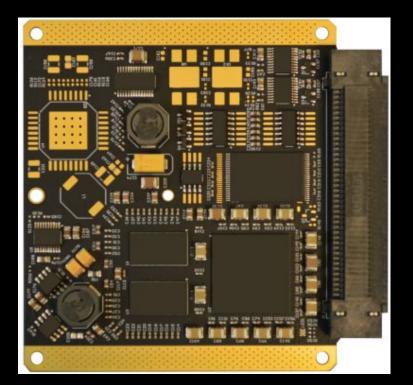
- Low shock pull pin and bracket release
 - mechanism
- Spring loaded hinge
- Lens covers stay attached at 180°



imaging DATA HANDLING

HARRISON LAMBERT

Data Handling



Data Handling

Payload Processor

- SpaceMicro Cubesat
 Processor with Xilinx FPGA
- x2.2 lossless compression
- Compresses at 2-3 Gb/sec
- Stores to spacecraft NAND Flash
- Rad tolerance of 30kRad

Communications

Image Data Volumes (Uncompressed)

- Vis/NIR Full Image satellites: 68 Gbits
- Vis/NIR 15% Image satellites: 27 Gbits
- TIR 25% Image satellites: 840 Mbits
- Will selectively downlink data
 TT&C immediately before downlink

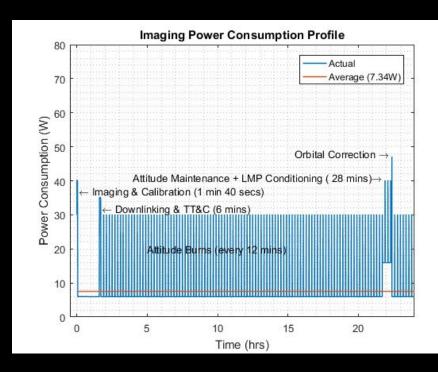
Communications

Image Downlink

- On-board system for downlinking:
 - Ka-Band
 - Horn
 - BPSK modulation
- 5 m ground dish
- Enough margin to close given max rain/attenuation losses

Link Budget	Downlink: Satellite to Ground
Frequency	26.8 GHz
Data Rate	116 Mbps
Receiver Gain	61 dB
Transmitter Gain	23.5 dB
Power (RF)	0.63 W
G/T	36.45 dB
EIRP	21.49 dB
Target SNR	8.5 dB
Link SNR	20.5
Max Attenuation	-9 dB
Margin	3 dB

imaging POWER


KEVIN CUEVAS

108

Power

Operations Cycle

- One Day in the Life (DitL)
- Each satellite Completes
 - 1 Imaging Pass
 - 1 Downlinking Pass
 - 1 Orbit Correction
 - 15 Total Orbits
 - Pass positions depend on
 - Target location
 - Ground locations
 - Image times

IMAGING THERMAL

KEVIN CUEVAS

110

Driving Components

Component	Operating Temperature (°C)	Heat Dissipation (W)	Operating Time (s)
Ka Horn	-40 to +80	14.3	300
VIS/NIR Optical Payload	-10 to +50	28	100
TIR Optical Payload	-10 to +50	6.6	100
Thrusters during Orbit Insertion	>-50	135	600

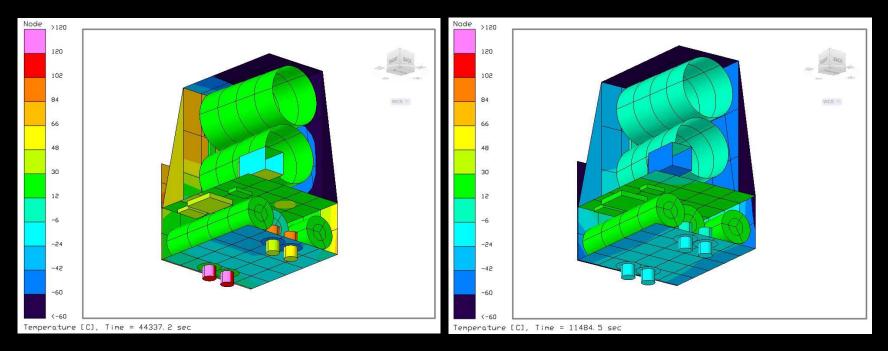
• Nominal Operations

- Hot Case: Polar orbit, 90° beta angle
- Cold Case: Sun Synchronous orbit
- 14 Sun Tracking Orbits, 1 Nadir Pointing Orbit

• Phasing Orbit

- Hot Case: 90° beta angle
- Cold Case: 0° beta angle, apogee in shade
- 7 Transfer Orbits max

- General Considerations
 - Keep optical payload warm
 - Dissipate optical payload and electronics heat loads
- Solutions
 - Wrap payload in 7-Layer MLI
 - Heat sink for downlink horn heat load


Payload Temperature Results

	Sun Synch		Polar	
Component	Min Temp (°C)	Max Temp (°C)	Min Temp (°C)	Max Temp (°C)
VIS/NIR Optical Payload	5.5	12.5	21	30
TIR Optical Payload	17.5	27	17.5	23.5

Vis/NIR: Transfer Orbit

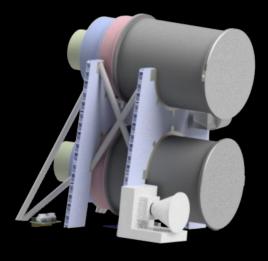
Hot Case: Polar Phasing Orbit

Cold Case: Sun-Synch Phasing Orbit

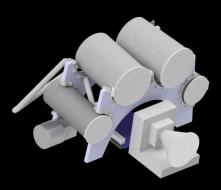
TIR: Transfer Orbit

Hot Case: Polar Phasing Orbit

Cold Case: Sun-Synch Phasing Orbit


IMAGING OVERALL SYSTEM KEVIN CUEVAS

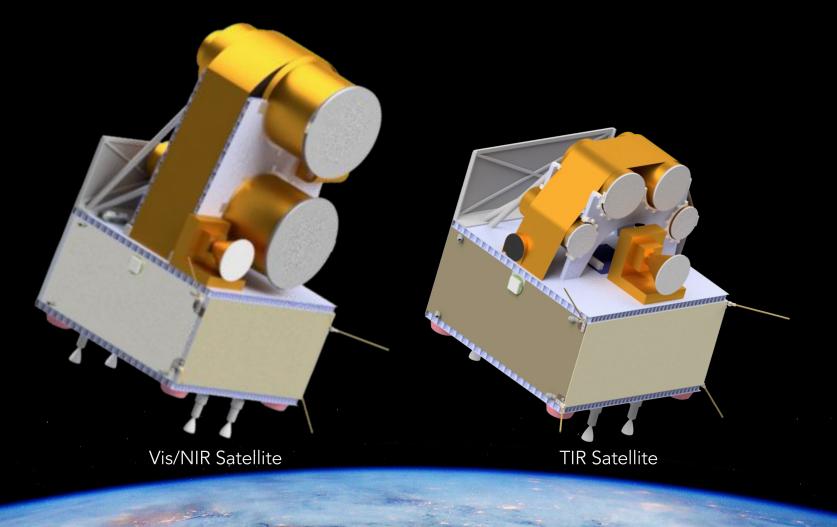
117


Overall System

AL POLY SPACE

Payloads

Vis/NIR Payload



TIR Payload

Payload and Bus Configuration

COMMUNICATIONS

SECTION 5 OF 9

Communications Outline

- System Requirements
- Major Trades
- Repeater Operations
- Repeater Payload
- ADCS
- Power
- Thermal
- Overall System

COMMUNICATIONS SYSTEM REQUIREMENTS

122

System Requirements

Requirements Flowdown

RFP and Architecture Requirements

- Daily repeater total time
- Maximum repeater gap time
- Capability allocation trade

Communications Constellation Requirements

- Orbit regime
- Number of satellites
- Repeater operations

Communications Satellite Design

- Payload design
- Pointing capabilities
- Maneuver capabilities

System Requirements

- Repeater Capability
 - 240 min/day
 - Maximum 120 minutes without Repeater Access
- Communications
 - Beyond line-of-sight to first responders
 - Minimum communications window of 3 minutes.

COMMUNICATIONS MAJOR TRADES

ZACK DAVIS

125

Trade	Outcome
Orbit Altitude	625 km
Variable vs. Invariable Orbits	Variable
Payload Antenna Type	3 patch antennas (2 receiver and 1 transmit)
Text vs. Voice	Text communication

Altitude

Option	Pros	Cons
High LEO	Longer pass times	Radiation Belts Must burn up to graveyard orbit instead of deorbit
Med LEO	Adequate pass times Easily burn down to deorbit	Longer time to orbit
Low LEO	Fastest time to orbit	Low pass times Deorbit quickly

Outcome: Med LEO

Orbits

Option	Pros	Cons
Latitude Matching	Optimal coverage Least number of satellites Prograde Longest pass time	Large Orbital Perturbations Large range of orbits
Polar	Small orbital perturbations Uniform global coverage	Short pass times Less passes per day
Sunsynchronous	Very small orbital perturbations	Largest number of satellites Shortest pass times Retrograde

Outcome: Latitude Matching

Antenna

Option	Pros	Cons
Omni	Minimal pointing required	Low gain
Patch	High gain Wide beam width	Larger size for UHF
Helix	High gain	Deployable Narrow beamwidth Larger size for UHF

Outcome: Patch Antenna

Data Type

Option	Pros	Cons
Text	Lower data rate Ability to pre-write message	Possible character errors due to BER
Voice	Conveys urgency	Higher data rate Cannot be pre-recorded Language/accent variances

Outcome: Text

COMMUNICATIONS REPEATER OPERATIONS ZACK DAVIS

Constellation Parameters

Altitude	Inclination	RAAN Spacing (Planes)	True Anomaly Spacing (Satellites)	Eccentricity
625 km	Latitude	Equal	40°	0

Constellation Scheme vs. Coverage Latitude

Latitude Bin	0°-16°	16°-25°, 65°-90°	25°-65°
No. of Satellites	16	12	16
No. of Planes	4	3	4

*0-16° covered by 16° inclination from St. Helena and Ascension launch site

Initial Operations

- Initialization
- Phasing and orbital correction burns
- Payload health check

Daily Operations

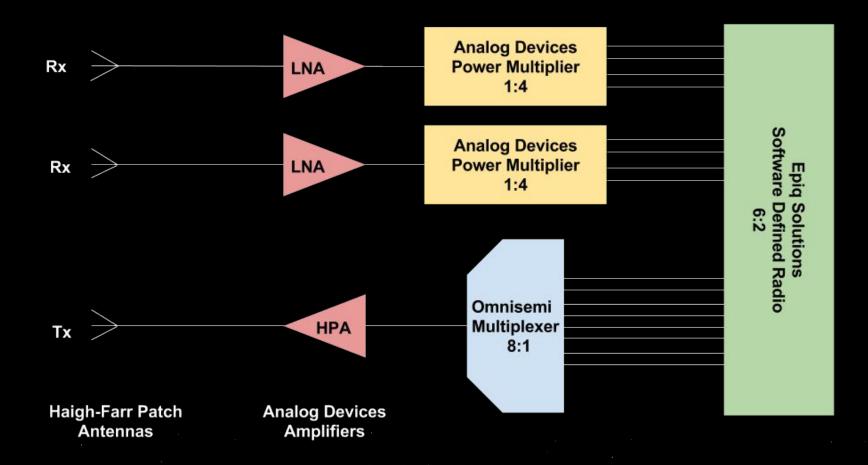
- Provide repeater access for the AOI
- TT&C for scheduling and health
- Sun tracking
- Maneuvers and pointing

Harris XL-200P handheld radio for first responders
 AES/DES encryption used to ensure communication occurs only in the AOI

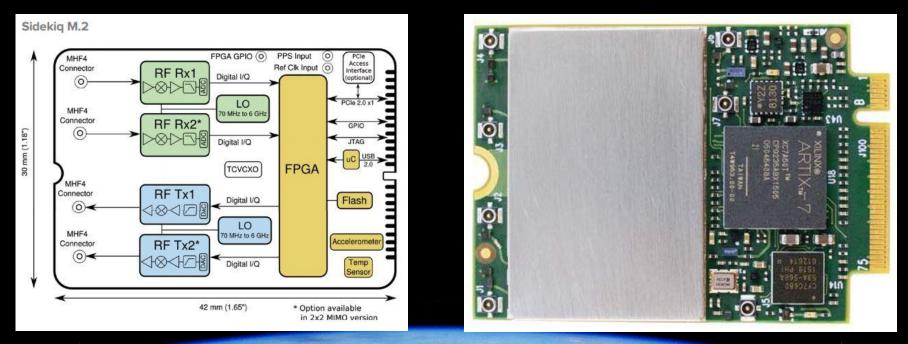
Channel Scheme				
Channel #	Channel Description	Uplink frequency (MHz)	Downlink Frequency (MHz)	Bandwidth (KHz)
1	Schedule/General Broadcast	411.025	421.025	12.5
2	Food/Water	411.325	421.325	12.5
3	Medical Aid (non-life threatening)	411.525	421.525	12.5
4	Evacuation	411.925	421.925	12.5
5	Life/death/SOS (1)	412.125	422.125	12.5
6	Life/death/SOS (2)	412.425	422.425	12.5

UHF Federal Incident Response Interoperability				
Channel #	Channel Description	Uplink frequency (MHz)	Downlink Frequency (MHz)	Bandwidth (KHz)
1	Calling	410.2375	410.2375	12.5
2	Ad hoc assignment	410.4375	410.4375	12.5
3	Ad hoc assignment	410.6375	410.6375	12.5
4	SAR incident Command	410.8375	410.8375	12.5
5	Ad hoc assignment	413.1875	413.1875	12.5
6	Interagency Convoy	413.2125	413.2125	12.5

COMMUNICATIONS REPEATER PAYLOAD

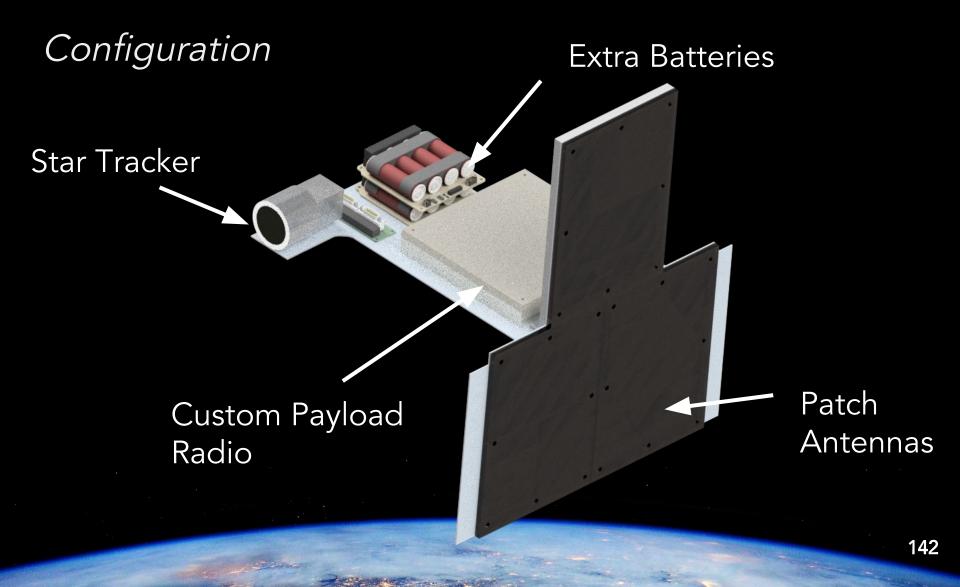

ZACK DAVIS

Payload Design: UHF Repeater


- Multiple Software Defined Radios (SDR)
 - Large frequency variability
 - Counteracts doppler shift
- Multiplexing: Frequency Division
 Full duplex system
- Multiple Access Scheme: Frequency Division
 Easiest, fastest
- Modulation: Frequency Shift Keying
 - Available on a handheld radio

Software Defined Radios

- Epiq Solutions Sidekiq M.2
- One RF receiver + one RF transmitter (separate LOs)
- Channel Bandwidth of 200kHz



Mechanical Design

- All components mounted on PCB
- Area PCB sized up 150% to account for spacing of components and other components not considered
- RF portion of payload surround by a 1mm thick aluminum casing
- Based on increased need for power, this payload will include 2 extra battery packs

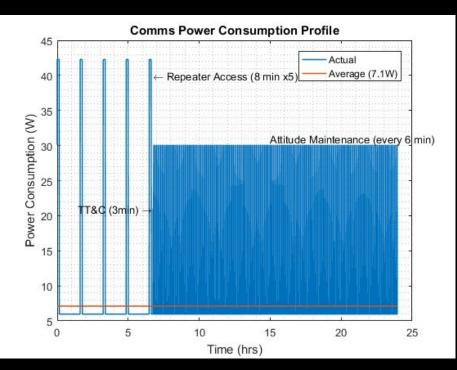
Link Budget	Uplink: Ground to Satellite	Downlink: Satellite to Ground
Frequency	410.6 - 412.8 MHz	420.6 - 422.8 MHz
Data Rate	2400 bps	19200 bps
Receiver Gain	4 dB	-3 dB
Transmitter Gain	-3 dB	4 dB
Power (RF)	1 W	5 W
G/T	-21.05 dB	-27.55 dB
EIRP	-3 dB	10.99 dB
Target SNR		10 dB
Link SNR	16.07	14.32
Margin	6.07 dB	4.32 dB

Comms Link Budget

COMMUNICATIONS

KEVIN CUEVAS

Power



Operations Cycle

- One Day in the Life (DITL)
- Each satellite completes

 Max. 5 repeater passes
 1 TT&C pass
 0 Orbit Corrections
 ~15 Total Orbits

 Passes are consecutive
- and will occur five in a row maximum

COMMUNICATIONS

KEVIN CUEVAS

Driving Components

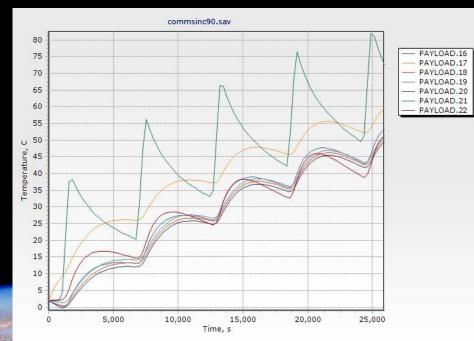
Component	Operating Temperature (°C)	Heat Dissipation (W)	Operating Time (s)
Repeater Payload	-55 to +125	22.6	480
Thruster during Orbit Insertion	-50<	135	100

• Nominal Orbit

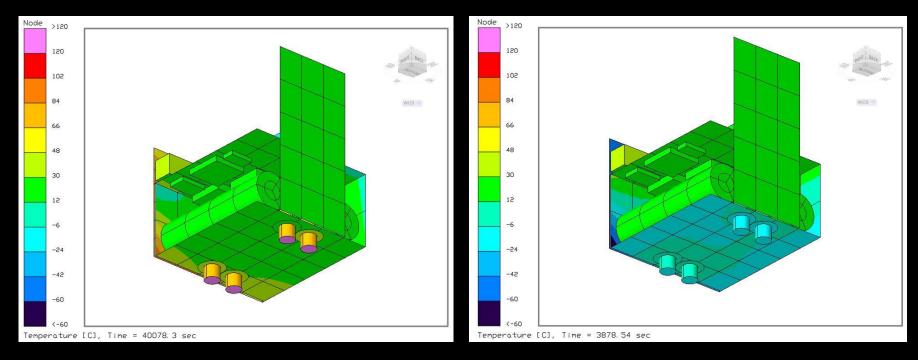
- Hot Case: 90° beta angle
- Cold Case: 0° beta angle
- 10 Sun Tracking Orbits, 5 Nadir Pointing Orbit

• Phasing Orbit

- Hot Case: 90° beta angle
- Cold Case: 0° beta angle, apogee in shade
- 7 Transfer Orbits max


- General Considerations
 - Dissipate repeater payload and electronics heat loads
 - Keep external batteries warm
- Solutions
 - Wrap payload and external components in 7-Layer MLI

Communications Sat: Temp Results

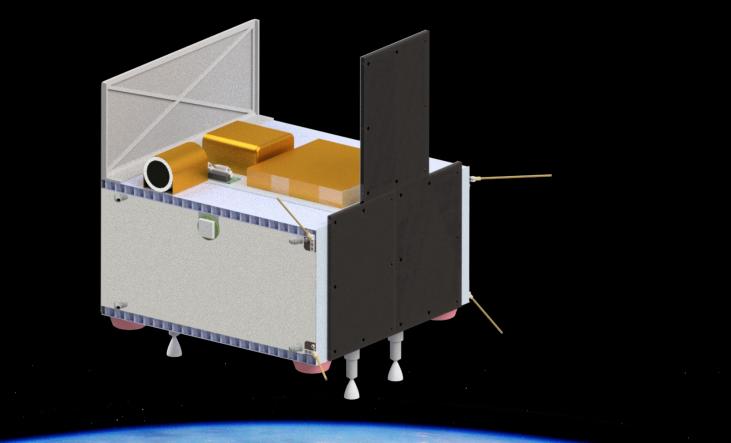

	0° Beta Angle		90° Beta Angle	
Component	Min Temp (°C)	Max Temp (°C)	Min Temp (°C)	Max Temp (°C)
Repeater Payload	-3	90	0	84

150

Transfer Orbit

Hot Case: Phasing Orbit

Cold Case: Phasing Orbit


COMMUNICATIONS OVERALL SYSTEM

KEVIN CUEVAS

Overall System

Payload and Bus Configuration

COMMON BUS

SECTION 6 OF 9

Common Bus Outline

- System Requirements
- Major Trades
- Satellite Operations
- CD&H
- TT&C
- Propulsion
- ADCS

- Guidance & Navigation
- Power
- Thermal
- Configuration
- Structures

COMMON BUS SYSTEM REQUIREMENTS

AUSTIN PRATER

System Requirements

Requirements Flowdown

Imaging Satellite Requirements

- Structure
- Propulsion
- ADCS

Communications Satellite Requirements

- Power
- TT&C

Common Bus Requirements Simplified Manufacturing Process

Reduced Development Cost

COMMON BUS

AUSTIN PRATER

Trade	Outcome	
Attitude Control	Cold Gas Thrusters	
Attitude Knowledge	Star Tracker + IMU	
Solar Panel Configuration	Single Body-Mounted	
Component Distribution	Isolated Decks	

Attitude Control

	Pros	Cons
Cold Gas Thrusters	Can be used to pressurize LMP-103 propellant Adequate level of control Less power (relative)	Limited propellant Somewhat complex Possibility to contaminate imaging payload
Reaction Wheels	Higher level of control accuracy Relatively simple	Wheels can saturate (magnetorquers needed) More power (relative)

Outcome: Cold Gas Thruster System

Attitude Knowledge

	Pros	Cons
Star Tracker	Accurate pointing for both payloads Few discrepancies between satellites	Higher cost Moderate volume considerations Communications satellite does not require star tracker
Sun Sensor + Magnetometer	Cheaper for Communications Fewer total star trackers Course measurements	Different attitude sensor/control law for imaging sat Cost of both star trackers and other sensors for Imager sat

Outcome: Star Tracker + IMU on Bus

Solar Panel Configuration

	Pros	Cons
1-Face Body Mounted	Simple collection scheme Low mass Simple harnessing	Overhangs bus (volume considerations)
3-Face Body Mounted	Relatively low mass Simple harnessing	Complex collection scheme
Deployable Panels	Simple collection scheme	Reliant on actuator success, Complex harnessing Moderate mass

Outcome: 1-Face Body Mounted

Component Distribution

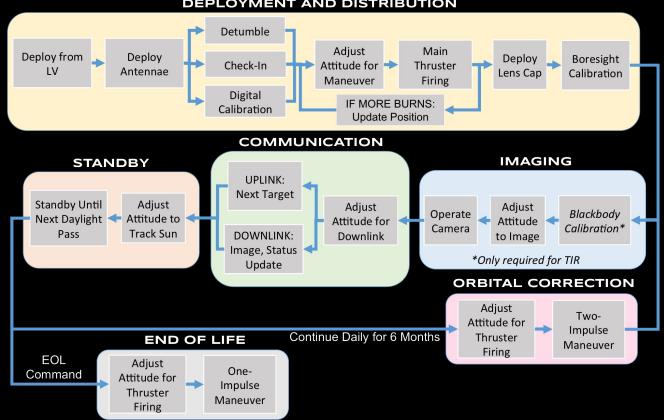
	Pros	Cons
Isolated Decks	Manufacturing simplicity Satellite accessibility during storage	Increased volume
Mixed Components	Compact configuration	Thermal Considerations Difficult to access components during 5 year storage

Outcome: Isolated Decks


COMMON BUS SATELLITE OPERATIONS

CARMELLE KOREN

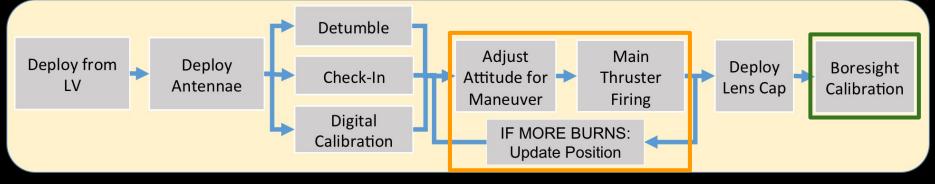
Imaging Satellites



DEPLOYMENT AND DISTRIBUTION

Autonomy

DEPLOYMENT AND DISTRIBUTION

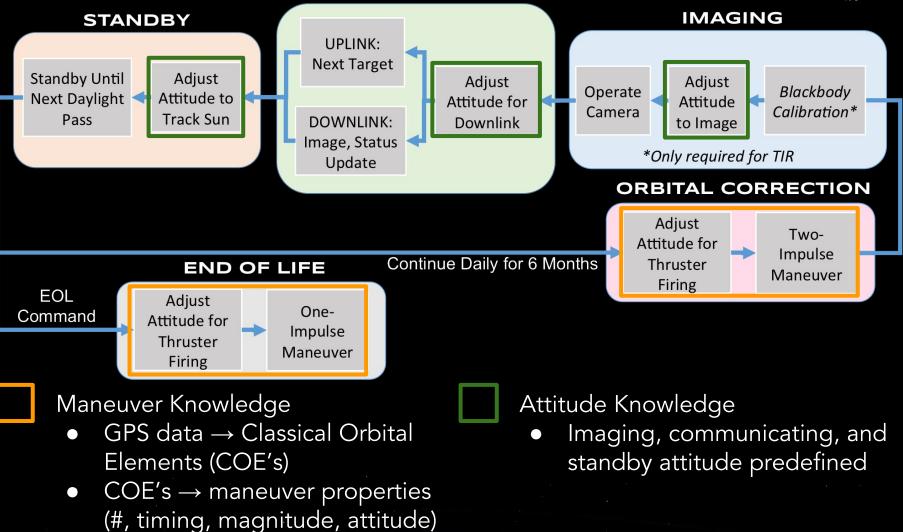

Phases and Modes

- Sequential progression
- Phase changes are initiated via GPS
- Mode changes are conditional and time-based

Autonomy: 1st 24 Hours

DEPLOYMENT AND DISTRIBUTION

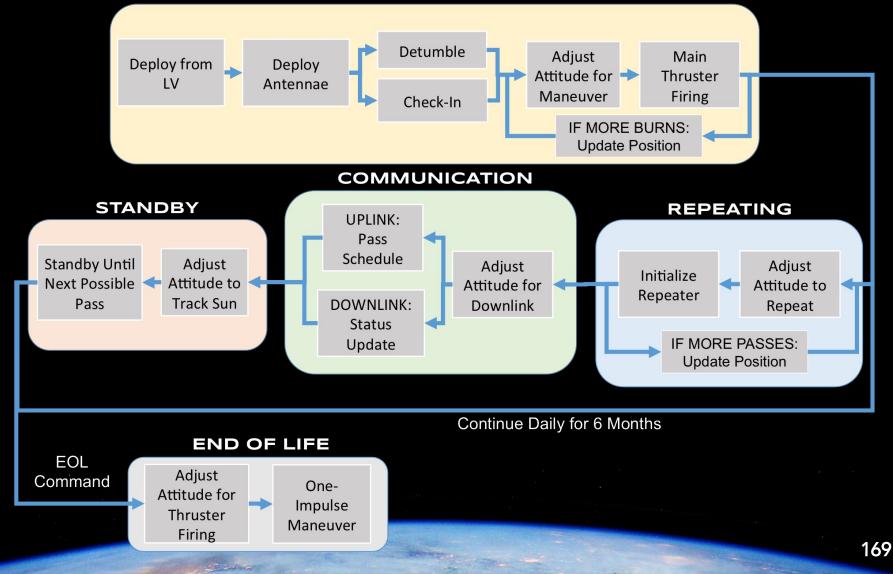
Maneuver Knowledge


- GPS data → Classical Orbital Elements (COE's)
- COE's → maneuver properties (#, timing, magnitude, attitude)

Attitude Knowledge

 Imaging, communicating, and standby attitude predefined

Autonomy: Nominal and EOL


COMMUNICATION

Communication Satellites

DEPLOYMENT AND DISTRIBUTION

Common Algorithms

- GPS to COE's
 - Position/velocity to ECI, then converted to COE's
- Change of COE's to maneuver properties
 O Hohmann transfers and CW methods
- Foundation transfers and Cvv methods • Standby, TTQC and payload appression att
- Standby, TT&C, and payload operation attitude
 - Preassigned to unique phases
 - Utilizes GPS and orbit propagator

Imaging-Specific Algorithms

- Boresight calibration
 - Visual comparison between images
- "Next target" packet to slew angles
 Lat/Lon compared to gridded AOI to slew angles

Communications-Specific Algorithms

 "Pass schedule" packet to duration of repeater phase

common bus C&DH

CARMELLE KOREN

Command & Data Handling

Processor: Space Micro Proton200k

- Size: 9 x 9.6 x 1.7 cm
- Mass: 200 g
- Rad-hardened to 30 kRad lifetime
 - Worst case satellitessee ~500 Rads
 - Rad-hardened mitigates upsets and latch-ups

COMMON BUS TT&C CARMELLE KOREN

174

Telemetry, Tracking, & Command

• UHF Band

Imaging TT&C Budget Comms TT&C Budget

- Four whips in phase quadrature
- BPSK modulation
- Ground Station Passes
- Imaging: >25 per day
- Comms: >4 per day

Link Budget	Imaging	Comms
Frequency	300) MHz
Data Rate	9.6 kbit/s	
Ground Gain	21.4 db	12 dB
Payload Gain	0 dB	
Power (RF)	0.25 W	
G/T	-3.3 -12.7	
EIRP	-6 dBW	
Target SNR	10.5	
Link SNR	33.1 dB	18.1 dB
Margin	22.6 dB	7.6 dB

Telemetry, Tracking, & Command

Astrodev Li-1 UHF Transceiver

- Half-duplex system
- 9600 kbits/s
- Total TT&C time: 3 minutes (worst case)

GUIDANCE & NAVIGATION

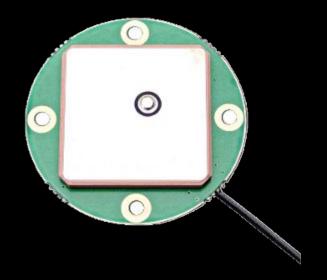
MICHAEL SALINAS

Guidance and Navigation

GPS Receiver

- Tracks all GNS constellations for solution
 - GPS, GLONASS, Galileo,
 BeiDou, and QZSS, SBAS
- Dimensions: 4.6 x 7.1 x 1.1 cm

GPS Receiver Key Specifications			
Horizontal Position Accuracy (RMS)	1.5 m		
Velocity Accuracy (RMS)	0.03 m/s		
Time Accuracy (RMS)	20 ns		
Maximum Data Rate	100 Hz		
Power Consumption	1.3 - 2 W		


GPS Receiver: Novatel OEM7720

178

Guidance and Navigation

GPS Antenna

- Physical Characteristics
 - \circ Dimensions: 3.5 (D) x 0.75 cm
 - Mass: 30 grams
- Functional Characteristics
 - Noise Figure: 1 dB
 - Constellations: GPS L1, SBAS
 - Frequency: L-Band
 - Wideband Single Feed Patch Antenna

Antenna: Tallysman TW1010

COMMON BUS ATTITUDE CONTROL SYSTEM

180

Day In The Life Imaging Pointing Schedule

- 1st orbit dedicated to imaging of the target area
 - Prepoint off-nadir maximum of 20.4 degrees
- Downlink images at next available ground station
 75 minutes maximum between imaging and downlinking
- Reorient to track sun for solar power generation
- TT&C can be performed on any orbit during sun tracking while within line of sight of ground stations
- Final orbit per day dedicated for orbital corrections

Imaging Spacecraft Pointing Requirements

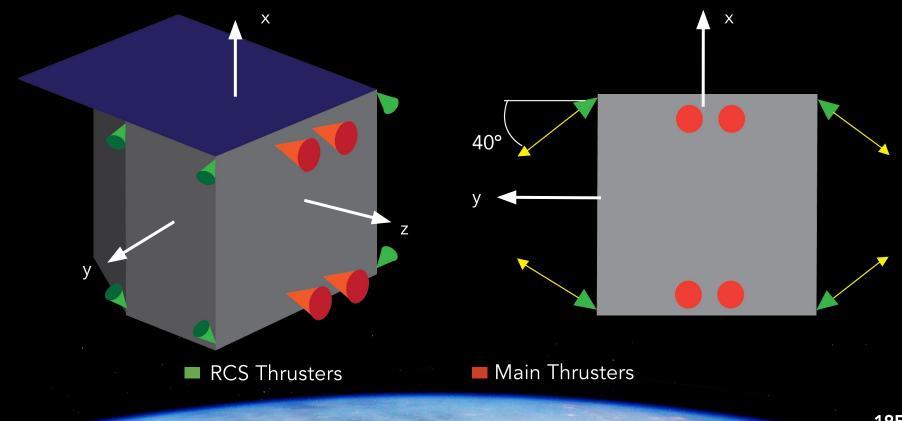
- Attitude knowledge requirement: 0.03 degrees
- Fine knowledge required during imaging phase and orbital correction

	Imaging	Downlink	Sun Tracking	Orbital Maintenance
Pointing Requirement (deg)	0.3	5.1	10	1
Slew Rate Requirement (deg/s)	<0.07	0.765	NA	NA

Day In The Life Communications Pointing Schedule

- First 5 orbits dedicated to text communication repeater access
 - Max off nadir angle of 60 degrees
- Remainder of day dedicated to solar power generation by sun tracking with solar panels
- TT&C can be performed anytime during sun tracking while within line of sight of ground stations

Communications Spacecraft Pointing Requirements


- Attitude knowledge requirement: 1 degree
- Nominal angular rate during standby mode

	Repeater	TT&C	Sun-Tracking
Pointing Requirement (deg)	21.7	NA (Omni)	10
Angular Rate Observed (deg/s)	0.05	0.05	0.05

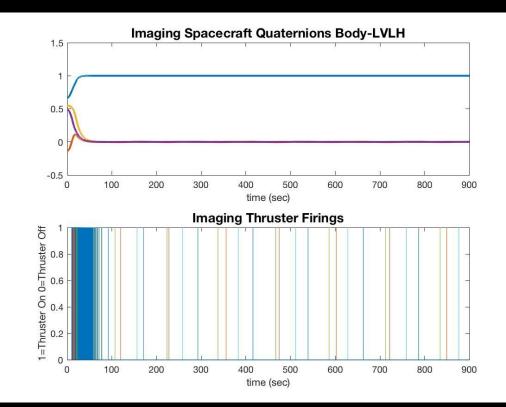
RCS Thruster Control

• 8 ACS Thrusters with Schmitt Trigger Control Scheme

ACS RCS Thrusters

• Single-coil operated valve, solenoid operated

- Reduced risk associated with internal valve leakage due to high cycle life
 RCS Thruster Key Specifications
- Dimensions: 1.7 (D) x 5.7 cm

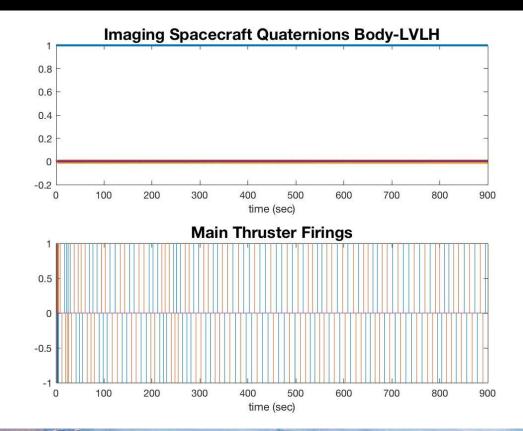

Moog 58E144 Cold Gas Thruster

RCS Thruster Key Specifications			
Thrust	40 mN		
Thrust Vector Accuracy	<1°		
lsp	>60 s		
Minimum Impulse Bit	0.25 mN-s		
Impulse Bit Repeatability	<5%		
Opening/Closing Response	<2.5 msec (each)		
Cycle Life	500,000 - 2,500,000 count		
Power Consumption	10 W (open) 1 W (holding)		

Thruster Simulations

Alignment of imaging spacecraft to LVLH frame

Mass Budget for Mission Lifetime


- Thruster burn duration of 450 seconds per thruster over mission lifetime
- Bang-bang control during maintenance
- 90,000 firings per thruster over mission lifetime

Operation	Propellant Mass (g)	
Pointing Maneuvers	142	
Standby Mode	7	
Disturbance Torques	39	
Detumble	2	
Total (20% Margin)	228	

Pulse Modulated Thrusters

• Torques due to mounting errors off the center of mass require pulse modulation of 4 main thrusters

COMMON BUS ATTITUDE DETERMINATION SYSTEM

MICHAEL SALINAS

Attitude Determination

- Hyperion Technologies/Berlin Space Technologies ST200 Star Tracker
- Dimensions: 5.0 (D) x 8.0 cm

Star Tracker Key Specifications			
Accuracy 3- o (Roll/Pitch/Yaw) 200 / 30 / 30 arcse			
Maximum Update Rate	5 Hz		
FOV	11° x 11°		
Sun Exclusion Angle	60°		
Maximum Slew Rate	0.3°/s		
Power Consumption	650 mW		

Angular Rate Measurement: IMU

- Single-Crystal Silicon Vibrating Ring Gyroscope
 - Low Bias Instability
 - Low Noise
- Dimensions: 3.9 x 4.5 cm

Gyroscope Key Specifications			
Angular Random Walk	0.15 °/√hr		
Scale Factor Accuracy	500 ppm		
Bias Instability	0.5 °/hr		
Sensor Misalignment	1 mrad		
Power Consumption	1 W		

Inertia Measurement Unit: Sensonor STIM300

Pointing Budget: Imaging Window

	Source	*X-Axis [°]	Y-Axis [°]	Z-Axis [°]
Thermal	Thermal Error	7.4e-8	6.9e-8	2.3e-10
	Star Tracker Accuracy	2.33e-4	2.7e-3	2.30e-4
	Star Tracker Mounting Misalignment	0.0185	0.0175	0.008
AD Sensors	Gyroscope Mounting Misalignment	0.0185	0.0175	-
	Gyroscope Sensor Misalignment	0.036	0.036	0.036
	Gyroscope Angular Random Walk	1.1e-3	1.1e-3	1.1e-3
	Gyroscope Bias Instability		2.78e-05	2.78e-5
Actuator	Effective RCS Error	0.005	0.005	0.005
T . I	Requirement	0.3	0.3	0.3
Totals	RSS Total 1- σ (w/ 20% contingency)	0.0541	0.0532	0.0450

** Errors from gyroscope scale factor, and GPS position/clock are negligible in this phase.

Pointing Budget: Communications Repeater

	Source	*X-Axis [°]	Y-Axis [°]	Z-Axis [°]
Thermal	Thermal Error	7.4e-8	6.9e-8	2.3e-10
	Gyroscope Mounting Misalignment		0.0175	-
AD Sensors	Gyroscope Sensor Misalignment	0.036	0.036	0.036
AD Sensors	Gyroscope Angular Random Walk	0.163	0.163	0.163
	Gyroscope Bias Instability	0.592	0.592	0.592
Actuator	Effective RCS Error	0.003	0.005	0.008
Totals	Requirement	21.7	66.7	21.7
	RSS Total 1- σ (w/ 20% contingency)	0.738	0.737	0.738

* X-Axis through patch antenna

** Errors due to Gyro Scale Factor GPS position/clock negligible during repeater operation

COMMON BUS

ANTHONY CRUZ

Propulsion

Flowdown Requirement

Engine Mass Thrust Propulsion Type Propellant Type Driver Power Dimensions

Satellite Maneuvers Summary

Maneuver	Injection Orbit Correction	Phasing	Stationkeeping	De-Orbit	Total
Imaging Required ΔV (m/s)	48	436	75	32	591
Comms Required ΔV (m/s)	30	130	0	48	208

Hydrazine vs. Green Propellant Trade

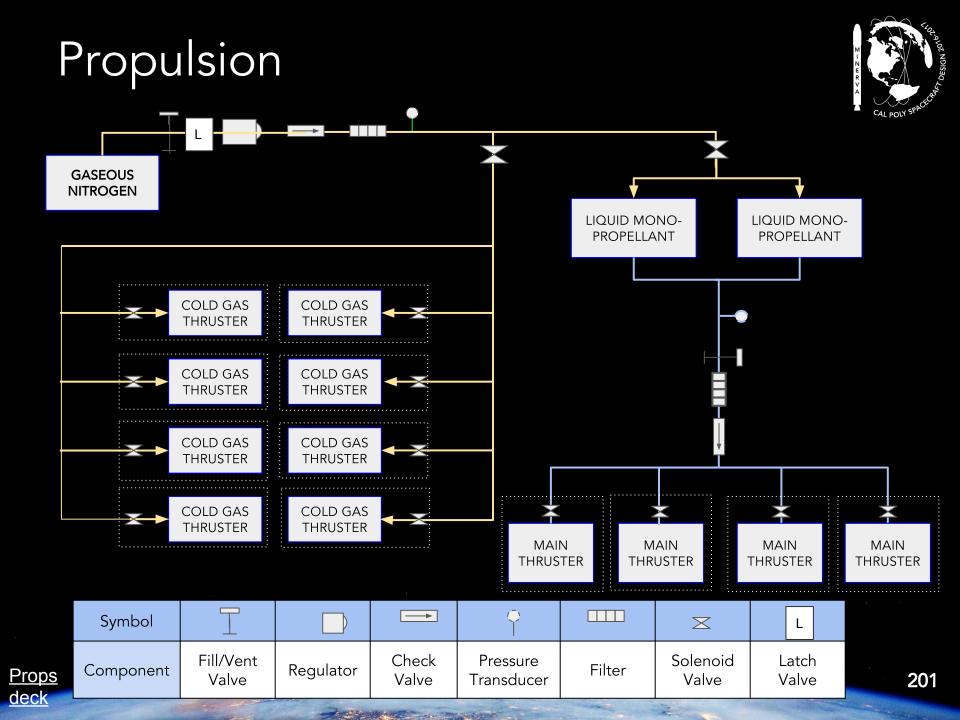
Propellant	Hydrazine	LMP-103s
Stability	Unstable	Stable
Toxicity	Highly Toxic	Low Toxicity
Corrosive	Yes	No
Carcinogenic	Yes	No
Flammable Vapors	Yes	No
Environmental Hazards	Yes	No
SCAPE Required (Handling)	Yes	No
Storable	Yes	Yes
Shipping	Class 8/UN 2029	UN/ DOT 1.4S

Propulsion

LMP-103s Green Propellant

- Ammonium Dinitramide (ADN) (65%), Methanol (20%), Ammonia (6%), and Water (Balance)
- Density: 1.24 g/cm³
- Operating Temperature Range: -5 to 50 °C
- Condensation of ADN: -7 °C
- Freezing: -90 °C
- Dissociation

Propulsion



Four 5 N High Performance Green Propellant Thruster

Thruster Specifications				
Total Thrust (N)	5			
Minimum Impulse Bit (N-s)	0.25			
Mass (kg)	0.38			
Power (W)	8			
lsp (s)	241			
Dimensions (cm)	17.5			
Mass Flow Rate (kg/s)	0.002			

More Specs

COMMON BUS

CHARLES WARD

Main Modes - IMG

- System Requirements

 42 W peak draw while performing orbit correction
 - \circ 7.5 W average per day
- Influence on components
 - Solar panels driven by average power
 - Min battery size determined by max. depth of discharge

Main Modes		Usage	Cycle Per Day
In	naging	40 W	200 s
<u>lmage (</u>	<u>Compression</u>	6 W	45 mins
Downlinking & TT&C		35 W	6 mins
Propellant Conditioning		16 W	30 mins
<u>Solar</u> <u>Tracking</u>		30 W Impulse	~Every 12 mins
Standby	<u>ldle</u>	6 W	~23 hours

Main Modes - COMM

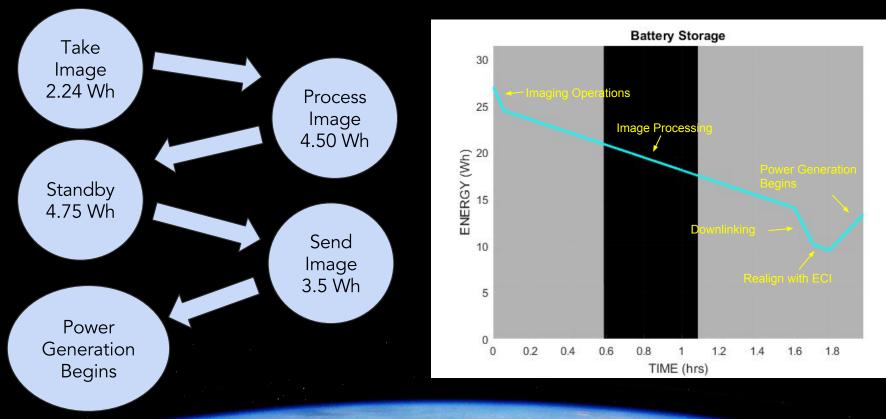
- System Requirements

 42 W peak draw during orbital insertion and repeater access
 - 7.1 W average per day
- Influence on components
 - Solar panels driven by average power
 - Min battery size determined by max. depth of discharge

Mai	n Modes	Usage	Cycle Per Day
<u>Repeater Access</u>		42 W	Max 8 min x 5
<u>TT&C</u>		21 W	3 min
Chanalla	<u>Solar</u> <u>Tracking</u>	30 W Impulse	~Every 6 mins
Standby	<u>ldle</u>	6 W	Time Remaining

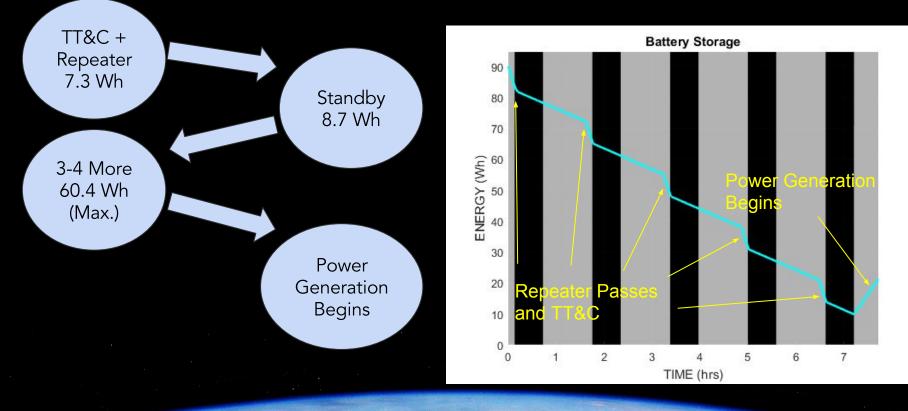
Imaging Budget

Suboutom		Nominal	Duty Cycles				
Subsystem	Component	Power (W)	IMG	DNLK	STANDBY	COND.	MAINT.
	Star Tracker	1.5	100%	100%	5%	5%	100%
ADCS	IMU	1.5	100%	100%	5%	5%	100%
ADCS	GPS	1	100%	100%	5%	5%	100%
	RCS Thruster (QTY 8)	5	<1%	<1%	<1%	<1%	0%
Propulsion	Engine (QTY 4)	8	0%	0%	0%	0%	100%
CD&H	Satellite Processor	1.5	100%	100%	100%	100%	100%
CD&H	Payload Processor	1.9	100%	<1%	<1%	<1%	<1%
TT&C	Radio	10	0%	10%	0%	0%	0%
СОММ	Radio Package	15	0%	100%	0%	0%	0%
Thermal	Heater	10	0%	0%	0%	100%	0%
Payload	Imager	28	100%	0%	0%	0%	0%
		Total (W)	40	35	6	16	42


COMMs Budget

Subayatam	Component	Nominal	Duty Cycles				
Subsystem	Component	Power (W)	REPEATER	TT&C	STANDBY	INSERTION	
	Star Tracker	1.5	100%	100%	5%	100%	
ADCS	IMU	1.5	100%	100%	5%	100%	
ADCS	GPS	1	100%	100%	5%	100%	
	RCS Thruster (QTY 8)	5	<1%	<1%	<1%	0%	
Propulsion	Engine (QTY 4)	8	0%	0%	0%	100%	
CD&H	Satellite Processor	1.5	100%	100%	100%	100%	
СОММ	TT&C Radio	10	0%	100%	0%	0%	
Payload	Custom Radio	31	100%	0%	0%	0%	
		Total (W)	42	21	6	42	

Operations Cycle


Worst case groups high energy modes close together.

Operations Cycle

• Worst case groups high energy modes close together

BOL/EOL Considerations

- End of 5 year Storage translates to 23% degradation in battery
- Solar Cell Degradation for 6 months in LEO expected to be ~1%
- First day of operations power positive due to charging while phasing and 25% requirement

Requirements Summary

- System must power the spacecraft during main operations without solar power generation
- Batteries must retain sufficient charge during five year storage and throughout the 6 month life on orbit
- Solar panels must recharge the batteries over a 24 hour period

Solution Summary

- 1 body mounted solar panel
- Spacecraft orient panel normal to the sun while recharging
- 1x 40 Wh Li-Ion Battery Pack for IMG, 3 packs for COMMs

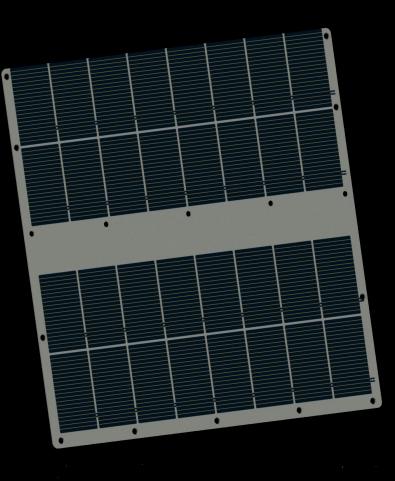
Payload	Avg. Power (W)	Peak Power (W)	Max Battery Discharge (W-hr)
Imaging	7.5	42	15
Comms	7.1	42	76

Panel	Sizing
	J

Average Power Consumption	7.5 W
Energy Needed Per Orbit	16 Wh
Daylight Power Generation Required	16 W
Min. Solar Cell Efficiency	24.8 %
Min. Solar Cell Area	540 cm² (no margin)
20% Margin	648 cm ²

Other Considerations

- Battery pack: 14.8 V
 Spacecraft: 12V, 9V, and 5V
 power supplied
 Valves and Thrusters stepping
 up to 24V
- 648 cm² is about 24 solar cells


Panel Sizing

Result

- Nominal 2.4 V and 1.12 W per cell
- 4 strings of 8 cells each (32 cells total), 19.2 V and 36 W

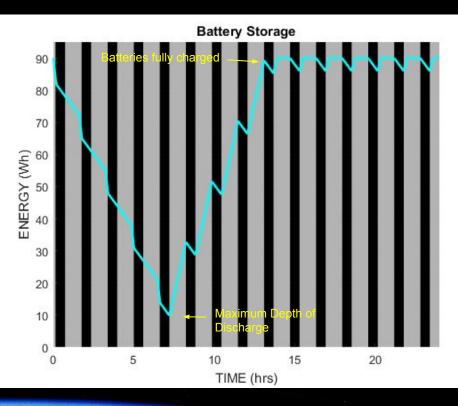
Min. Solar Cell	540 cm² (no
Area	margin)
Actual Solar Cell	864 cm² (60%
Area	Margin)

Baseline Assumptions

	Assumption	Rationale
Solar Cell BOL Absorptivity	0.307	GaAr TJ Cells from Spectrolab
Temperature Effects (ref temp 25 ° C)	-0.3 %/° C @ 85° C	Mid-range Value for Solar Cells
Solar Cell Degradation	2.75 %/yr	GaAr in LEO Orbit
Battery Charge/Discharge & PDU Efficiencies	90%/80% & 80%	Typical Efficiencies
Battery Energy Density	120 Whr/Kg	Li-Ion 15650 Cells
Battery Max. Depth of Discharge	100%	~180 cycles

Operations Cycle

• Worst case groups high energy modes close together


Orbit	Main Operations	Net Battery Change (W-hr)	Battery Storage
1	Imaging collection & processing	-11.5	25 දු ²⁰
2	Downlinking & TT&C	-3.5	(W) X (W) 15 15 H
3-14	Power generation	+15	10 Moximum Depth of Dincharge
15	Power generation & orbital maintenance	+0	0 0 5 10 15 20 TIME (hrs)

Operations Cycle

• Worst case groups high energy modes close together

Orbit	Main Operations	Net Battery Change (W-hr)
1-5	TT&C and Repeater Accesses	-76
6-15	Power generation	+76

COMMON BUS

KIAN CROWLEY

Common Bus Components

Component	Operating Temperature (°C)	Heat Dissipation (W)	Operating Time per Day (s)
Propellant	-5 to +50	~	~
Thruster during Orbit Insertion	>-50	135	600 (one time)
Gyro, Star Tracker	-40 to +75	1.5	4320
GPS Receiver	-40 to +85	1	4320
Satellite Processor	-25 to +60	2.56	86400
PDU	-20 to +80	Varying	86400
TTC Radio	-35 to +85	8	180
Battery	-40 to +85	Varying	86400

Solutions

- Thermally isolate tanks from bus and wrap with 11-Layer MLI
- High heat capacitance ceramic between thruster and bus
- 11-Layer MLI around spacecraft bus
- Generally low emissivity surfaces to keep bus warm
- Heaters warm propellant tanks to suitable temperatures for firing (VIS/NIR only)

MLI Blankets

Blanket	Absorptivity	Effective Emissivity	Thickness (mm)
11 Layer (5x Dacron, 5x Mylar, 1x Kapton)	.16	.05	0.838
7 Layer (1x Teflon, 3x Dacron, 2x Mylar, 1x Kapton)	.14	.14	0.606

Comms Surface Finishes/Paints

Surface Finish	Absorptivity	Emissivity	Location
Finch Aluminum Paint	.22	.23	Top side of top honeycomb
SiOx Coating	.14	.12	Underside of bottom honeycomb
Martin Black Paint	.94	.94	Inside surfaces of bus

VIS/NIR Surface Finishes/Paints

Surface Finish	Absorptivity	Emissivity	Location
Aluminum, Vapor Deposited	.08	.02	Top side of top honeycomb
80 U Leafing Aluminum Paint	.29	.32	Underside of top honeycomb
Martin Black Paint	.94	.94	Top side of bottom honeycomb
Chromacoat Aluminum	.28	.05	Underside of bottom honeycomb

TIR Surface Finishes/Paints

Surface Finish	Absorptivity	Emissivity	Location
Finch Aluminum Paint	.22	.23	Top side of top honeycomb
Aluminum, Vapor Deposited	.08	.02	Underside of top honeycomb
Martin Black Paint	.94	.94	Top side of bottom honeycomb
Chromacoat Aluminum	.28	.05	Underside of bottom honeycomb

Thermal Margins

Component	Operating Temperature (°C)	Temperature Margin (°C)
Propellant	-5 to +50	5
Gyro, GPS Receiver, Star Tracker, TTC Radio, Ka Horn, Batteries	-40 to +85	20
Satellite Processors	-20 to +60	15
Payload Components	Varying	15

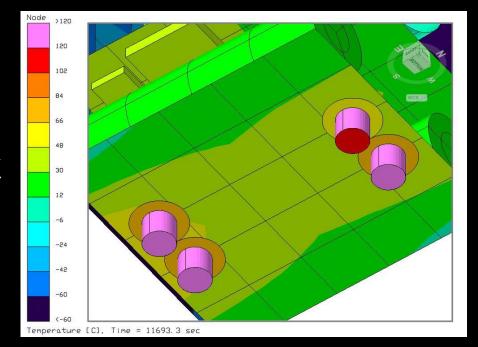
VISNIR Imaging Op Temps

TIR Imaging Op Temps

<u>Comms Op Temps</u>

Temperature Results

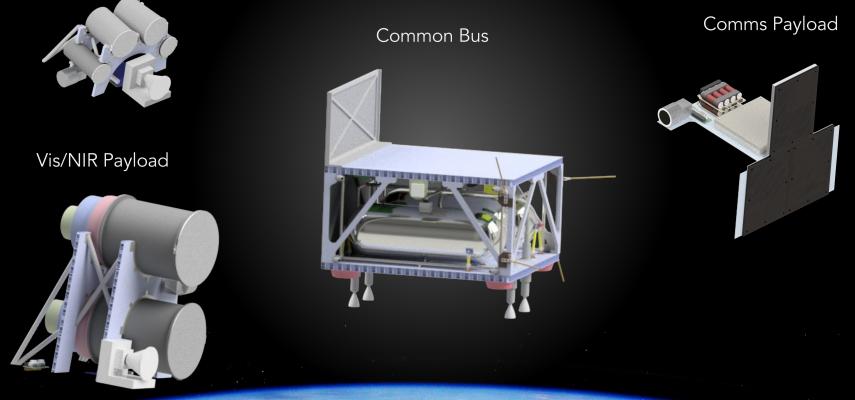
Component	Hot Case: Comms Polar		Worst Case Cold: Imaging Sun Synch	
Component	Min Temp (°C)	Max Temp (°C)	Min Temp (°C)	Max Temp (°C)
Pressurant Tank	2	26	6.5	11.5
Fuel Tanks	13.5	25.5	10	20


<u>SS: VIS/NIR Tanks</u>	<u>Polar: VIS/NIR Tanks</u>	<u>SS: TIR Tanks</u>	<u>Polar: TIR Tanks</u>	<u> Odeg: Comms Tanks</u>	<u>90deg: Comms Tanks</u>
SS: VIS/NIR Electronics	Polar: VIS/NIR Electronics	SS: TIR Electronics	Polar: TIR Electronics	Odeg: Comms Electronics	<u>s 90deg: Comms</u> Electronics
<u>SS: VIS/NIR Payload</u>	Polar: VIS/NIR Payload	<u>SS: TIR Payload</u>	Polar: TIR Payload	<u> 0deg: Comms Payload</u>	<u>90deg: Comms Payload</u>

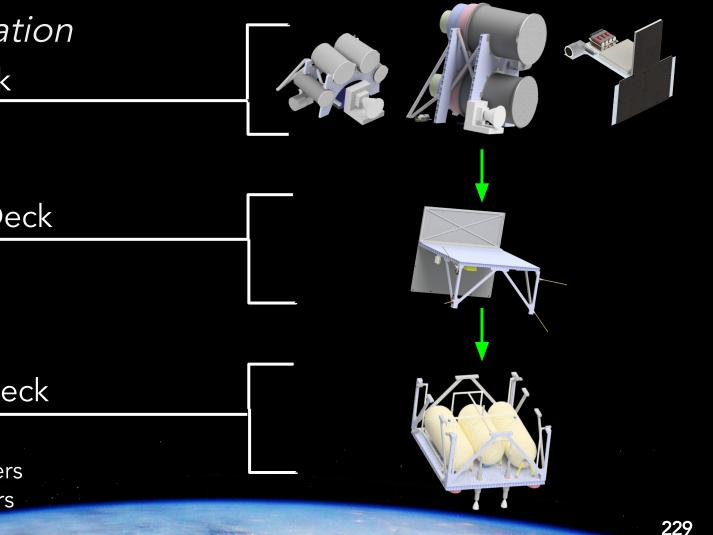
Ceramic Thruster Adapter

- Structural ceramic with high heat capacitance, low conductivity
- Cordierite Ceramic

 Conductivity: 3 W/mC
 Density: 2600 kg/m³
 Cp: 1465 J/kgC


COMMON BUS

VAN MACASAET

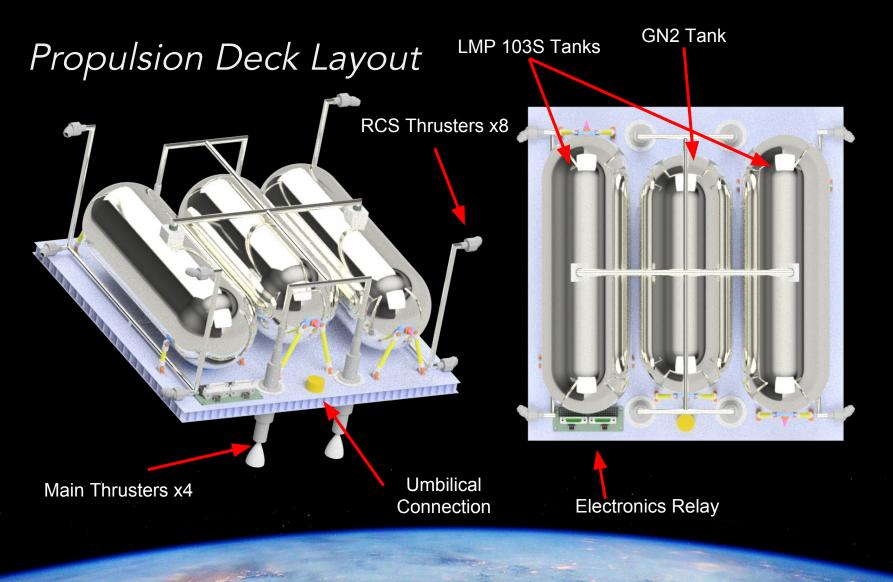


Interchangeable Payloads

TIR Payload

Deck Integration Payload Deck

- VISNIR
- TIR
- Comms


Electronics Deck

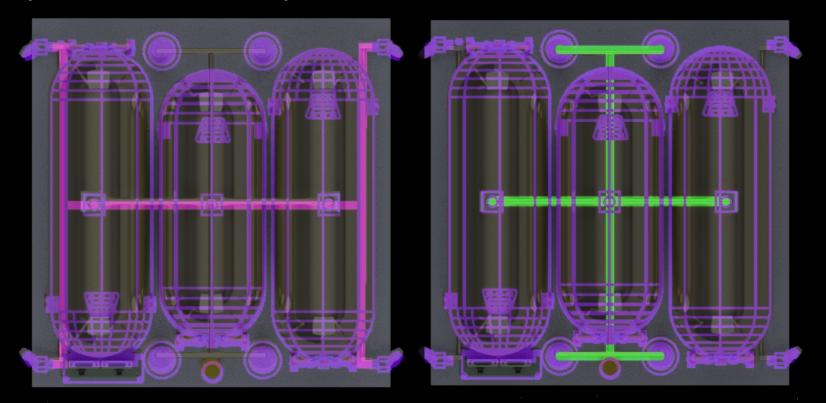
- Power
- ADCS
- CD&H
- TT&C

Propulsion Deck

- Fuel tanks
- Main thrusters
- RCS thrusters

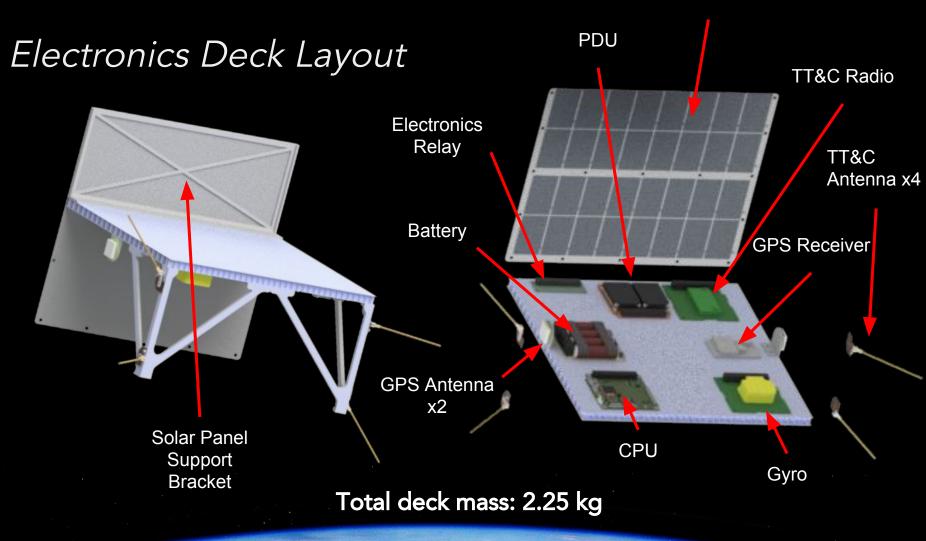
Propulsion Deck Layout

LMP Piping Corner brackets x4 **RCS** Piping Honeycomb Ceramic Panel Thruster A JOULA Housing x4 Total Dry Mass: 6.73 kg


Propulsion Deck Wiring

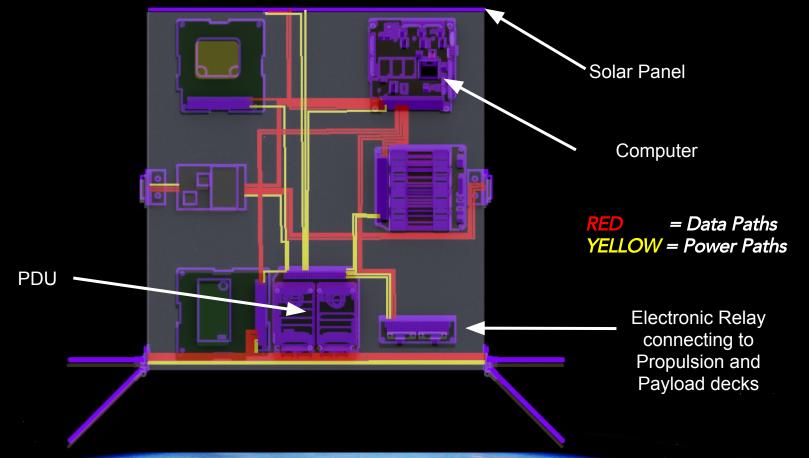
Electronic Relay connecting to Electronics Deck

Propulsion Deck Piping



GREEN = LMP Piping MAGENTA = GN2 Piping

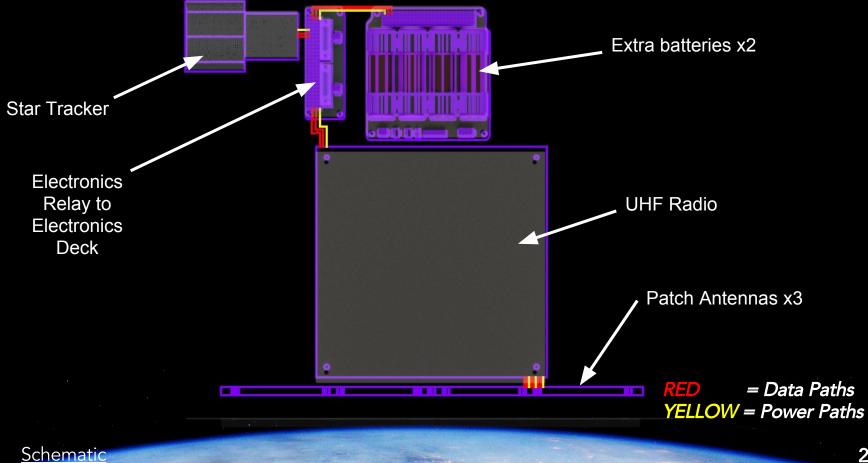
<u>Schematic</u>

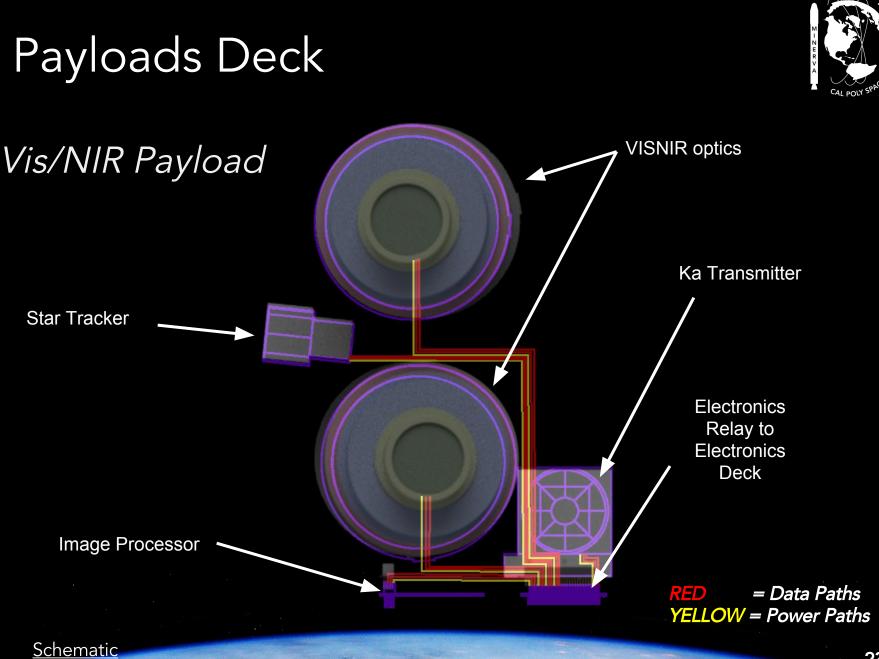


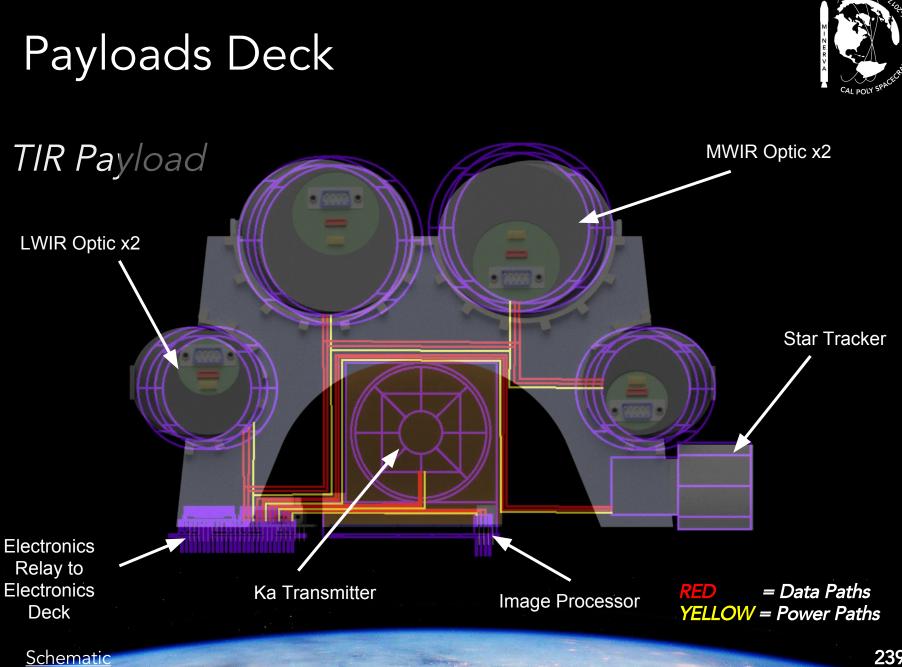
Solar Panel

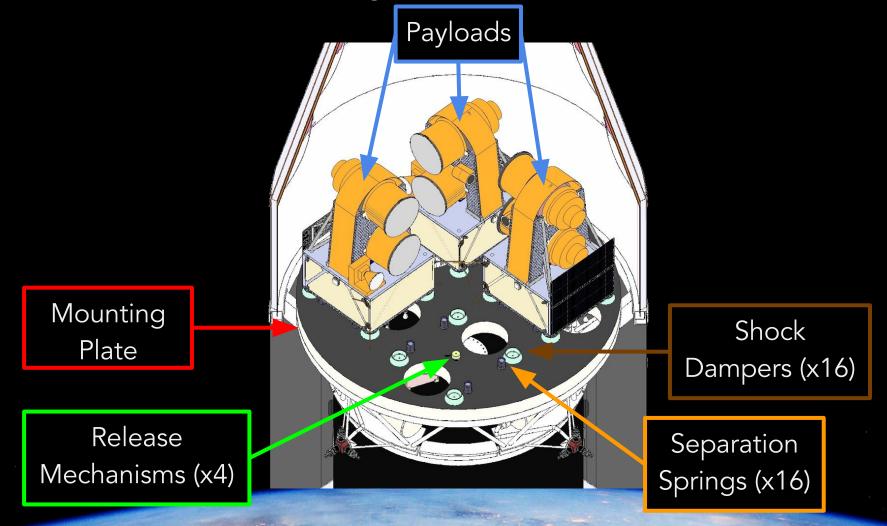
Electronics Deck Wiring

Payload Decks

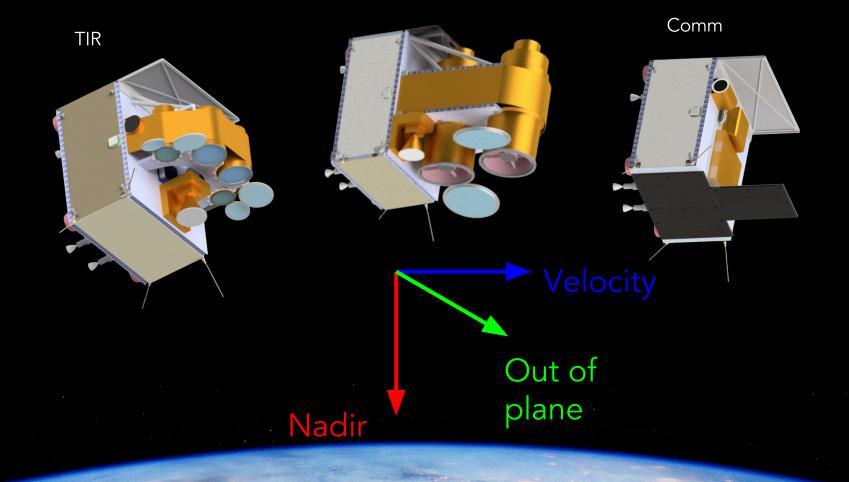







Communications Payload

Launch Vehicle Integration



Orientation During Payload Ops

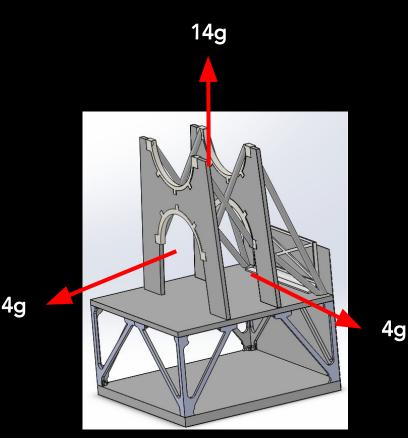
Vis/NIR

Subsystem Mass Budget

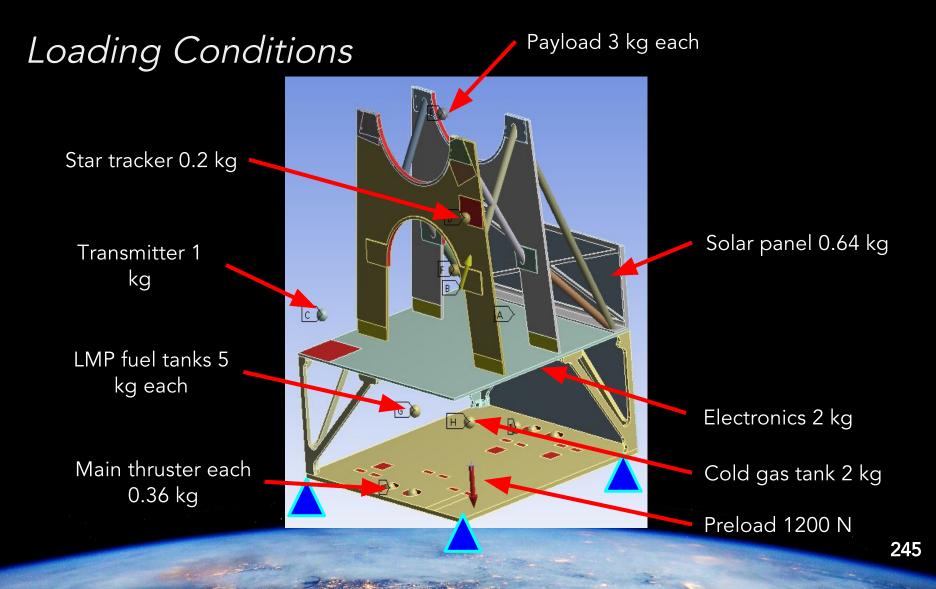
Subsystem	Vis/NIR Mass (kg)	TIR Mass (kg)	Comms Mass (kg)
ADCS	0.294	0.294	0.294
Propulsion	13.43	13.43	7.82
Structure	2.80	2.50	2.30
Thermal	1.02	1.08	0.79
Comms	1.21	1.44	0.184
Power	1.44	1.44	1.94
Payload	7.5	2.75	1.21
Total	27.69	22.51	14.54

COMMON BUS STRUCTURES

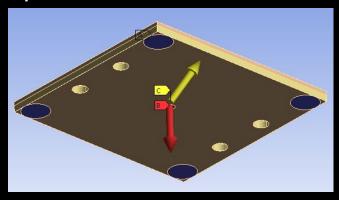
SAM MOSS

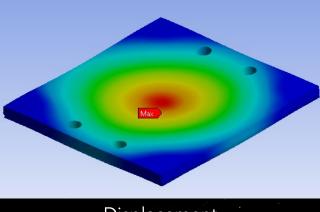

243

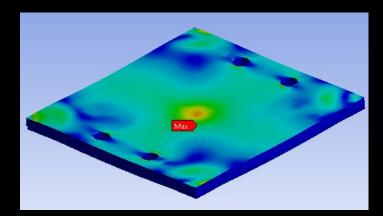
Loading Requirements


- Steady State

 Axial = 10.5g
 Lateral = 3.5g
- Sinusoidal Accelerations
 Axial = 3.5g
 Lateral = 0.25g
- Equivalent Static Loads
 Axial ~ 14g
 Lateral ~ 4g
- Random Vibrations
 Grms = 14.1 g²/Hz

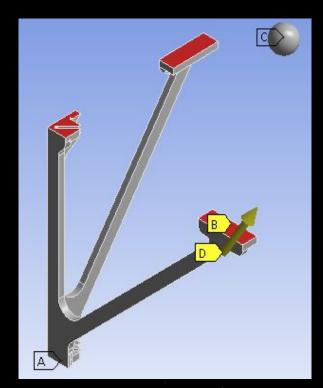

VISNIR Satellite



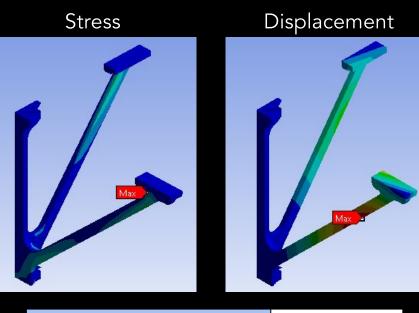

Propulsion Deck Panel

Boundary Conditions

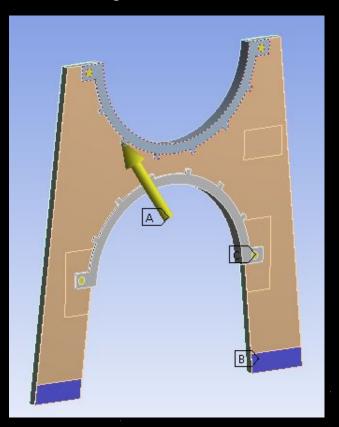
Displacement



Stress


Face-sheet	CFRP 230 GPa
Core	3/16 – 5052 – 8.1
Mass (kg)	0.43
Max Stress (MPa)	145.5
Max Displacement (mm)	1.5
Factor of Safety	2.4

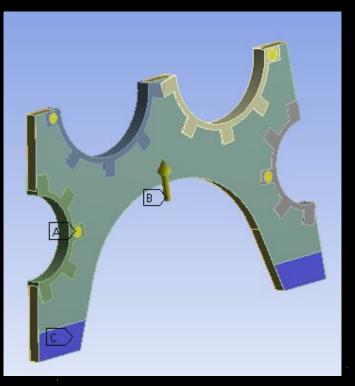
Corner Support Post


Boundary Conditions

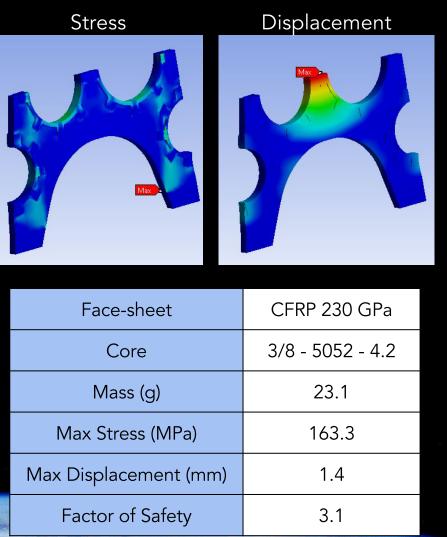
Material	Al 6061-T6
Mass (kg)	0.143
Max Stress (MPa)	147.9
Max Displacement (mm)	0.6
Factor of Safety	1.9

VisNir Payload Panel

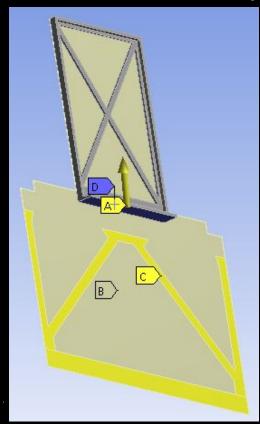
Boundary Conditions


Stress

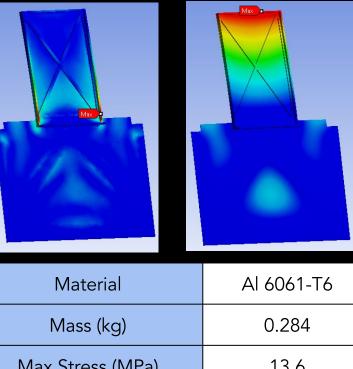
Stress	Displacement
Face-sheet	CFRP 230 GPa
Core	3/8 - 5052 - 4.2


Face-sheet	CFRP 230 GPa		
Core	3/8 - 5052 - 4.2		
Mass (g)	52.6		
Max Stress (MPa)	221.9		
Max Displacement (mm)	0.50		
Factor of Safety	2.3		

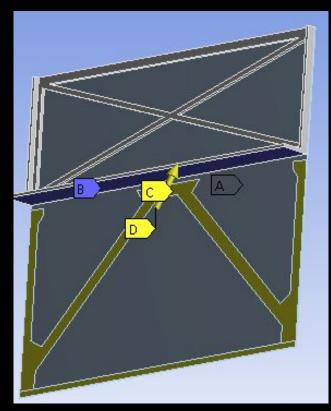
TIR Payload Panel



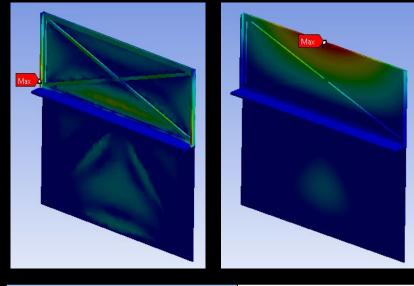
Boundary Conditions


Comms Payload Support

Boundary Conditions


Displacement

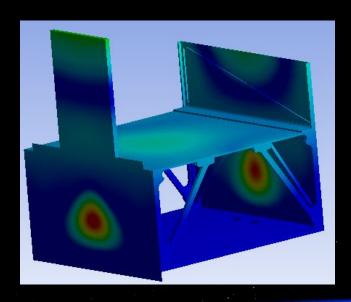
Mass (kg)0.284Max Stress (MPa)13.6Max Displacement (mm)1.3Factor of Safety1.9

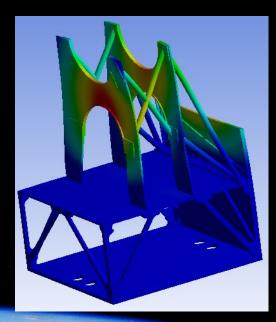

Solar Panel Support Truss

Boundary Conditions

Stress

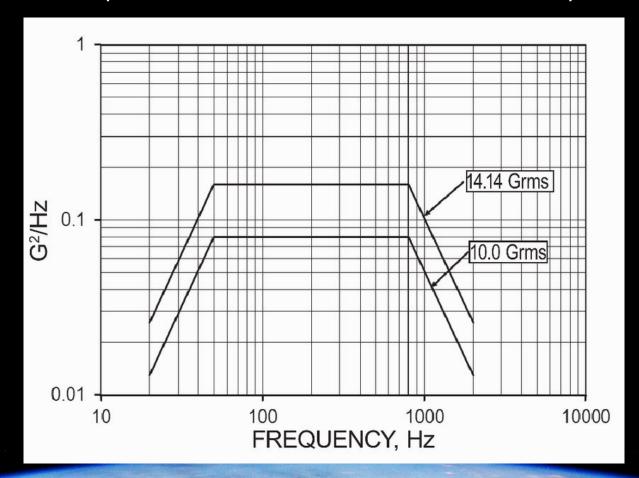
Displacement



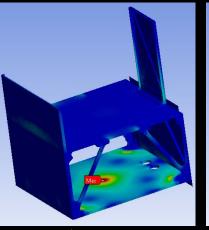

Material	Al 6061-T6		
Mass (kg)	0.183		
Max Stress (MPa)	31.9		
Max Displacement (mm)	1.1		
Factor of Safety	1.8		

Natural Frequencies:

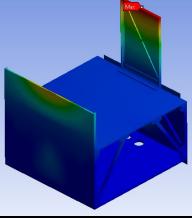
Comms Satellite		Imaging Satellite					
Mode	1	2	3	Mode	1	2	3
Frequency (Hz)	68.5	77.4	136.5	Frequency (Hz)	66.0	76.5	83.0



NASA GEVS protoflight random vibration qualification

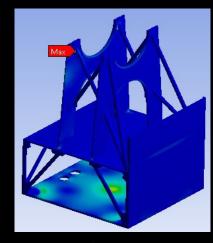


Structures



Random Vibration

Communication Satellite			
Max Stress (MPa) 79.0			
Max Displacement (mm)	1.3		



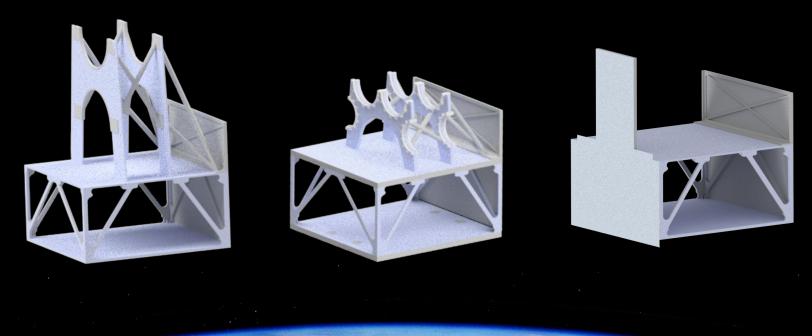
Stress

Displacement

Imaging Satellite		
Max Stress (MPa) 121.7		
Max Displacement (mm)	1.1	

Stress

Displacement



Summary of each satellite structural components

VISNIR	TIR	Comms
2.8 kg	2.5 kg	2.3 kg

BREAK

256

LAUNCH VEHICLE

SECTION 7 OF 9

Launch Vehicle Outline

- System Requirements
- Major Trades
- Staging
- Trajectory
- Payload Integration
- Fairing

- GN&C
- Power
- TT&C
- Structures
- Thermal
- Configuration

LAUNCH VEHICLE SYSTEM REQUIREMENTS

MICHAEL WILLIAMS

System Requirements

RFP Requirements

- 24 hour launch time
- 5 year storage time

Satellite Requirements

- Mass
- Volume
- Orbits
- Number of satellites

Trajectory Requirements

- Altitude and velocity
- Insertion accuracy

Launch Vehicle Design

- Propellant choice
- Stage sizing

System Requirements

- Time to launch
 - As quickly as possible from time of command to meet
 12 hour and 24 hour payload requirements
- Storability
 - System must remain fully ready for 5 years
- Payload Accommodations
 - Design to accommodate a unique payload
- Versatility
 - Launch vehicle must be able to reach a range of target orbits

LAUNCH VEHICLE MAJOR TRADES

MICHAEL WILLIAMS

Major Trades

System Trades

Trades	Outcome
Launch Type: Air vs. Land vs. Sea	Launch from Land
Upper Stage Propellant: Solid vs. Liquid	Solid
Sats per LV: 2 vs. 4	4

System Trades

Launch Type: Air vs. Land vs. Sea Trade

Option	Pros	Cons
Air	Wide range of locations that launch can occur from	System is very complex compared to other systems
Land	Maintenance and launch time short compared to other options	Less launch location options and more regulations to abide by
Sea	No regulations to abide by in international waters	Difficult to perform maintenance and long launch time

Outcome: Launch from land

System Trades

Solid vs. Liquid Upper Stage

Option	Pros	Cons
Liquid (LMP 102S) enable simpler flight cata		Complex design due to catalyst bed requirements and overall tank and piping system needed
Solid (HTPB)	Better performance than LMP-103S and simpler design	One-time burn means that de-orbit and trajectory variation is more complex

Outcome: Solid (HTPB)

System Trades

Satellites per Launch Vehicle

Option	Pros	Cons
2 Satellites	Launch vehicle requires less capabilities to transport payload to desired orbit	Increased cost due to more launch sites and launch vehicles needed
4 Satellites	More efficient payload mass to orbit per launch vehicle. Less launch vehicles and launch sites needed	Need launch vehicles with greater performance capabilities needed to transport payload to desired orbit

Outcome: 4 Satellites

Major Trades

Vehicle Trades

Trades	Outcome	
Launch Vehicle Motor: Design vs. Buy	Buy & Modify	
First Stage Separation Method	Hot Separation	
Range Safety Method	Autonomous Flight Termination System	

Vehicle Trades

Design vs. Buy Motor

Option	Pros	Cons
Design	Lower production cost and greater customizability capabilities	Long development timeline and high development cost to design the system
Buy and Modify	Cheaper faster to buy and modify compared to design a new system	Costs more to have another company build the engines. Less customization options

Outcome: Buy and Modify

Vehicle Trades

First Stage Separation Method

Option	Pros	Cons
Cold Separation	Lower risk associated with cold separation with no overpressurization	Potential for loss of control due to unstable vehicle during first separation
Hot Separation	Greater control over the launch vehicle during hot separation, flight proven	Concern about vehicle damage due to overpressurization during hot separation

Outcome: Hot Separation

Vehicle Trades

Range Safety

Option	Pros	Cons
Manual Termination	More direct control over the decision to terminate the flight of the launch vehicle	Higher cost to pay personnel to monitor flight; more complex system
Autonomous Termination	Less expensive system overall and less complexity required, flight proven	Less control over the termination of the launch vehicle flight

Outcome: Autonomous Flight Termination

Launch Vehicle Overview

- 3 Stage
- Solid Propellant
- LV Capability: 125 kg to sun-sync
- Sizing:

N

ε

U

2

0

N

- Total Height: 20 m
- Rocket Diameter: 1.3 m
- Fairing Diameter: 1.5 m
- Slenderness Ratio: 15.75
- Total Mass: 28,000 kg

LAUNCH VEHICLE TRAJECTORY

NATHAN GEHRKE

Staging Overview

- All stages use HTPB polymer, 19% aluminum
- Solid motors were selected due to:
 - Long term storage capabilities
 - Simplicity of design integration
 - Performance metrics

Stage	Engine	Wet Mass (kg)	Max. Thrust (kN)	Burn Time (s)
1	Orion 50S XLG	16,204	667.2	60.1
2	Orion 50 (X)XL	10,366	154	175.1
3	Orion 38	978	32	68.4

Requirements

- Required mass to orbit
- LV capable with margin

	Mass (kg)	Inclinations (°)
Communications Payload	62	16-90
TIR Payload	100	97.7 90
Vis/NIR Payload	115	97.7 90
Max LV Capability	125	97.7

Trajectory - Driving Cases

CANADA

UNITED STATES

ILS

North

Pacific

802353 (800350) 2.95

275

Launch Location	Img Launch	Comms Launch
St. Helena	Highest Delta V	
Hawaii		
W. Australia		
Ascension Island		Lowest Delta V

22

AeroSpace Trajectory Optimization Software (ASTOS)

Inputs

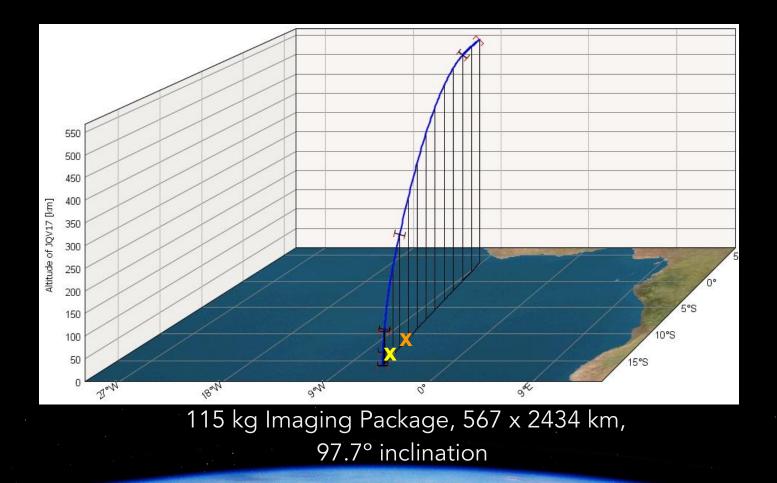
- Motor data
- Environment models
- Launch location

Phases

- Coasts
- Control laws
 - Cost function
 - Constraints

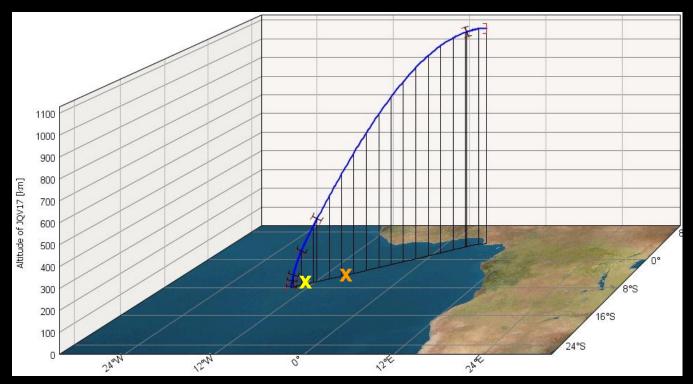
Outputs

- Optimized phase timing
- Stage Sizing
- Auxiliary curve Plots

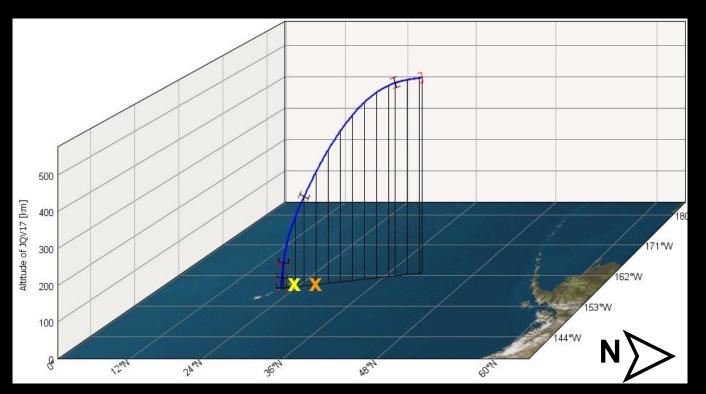


Trajectory Constraints

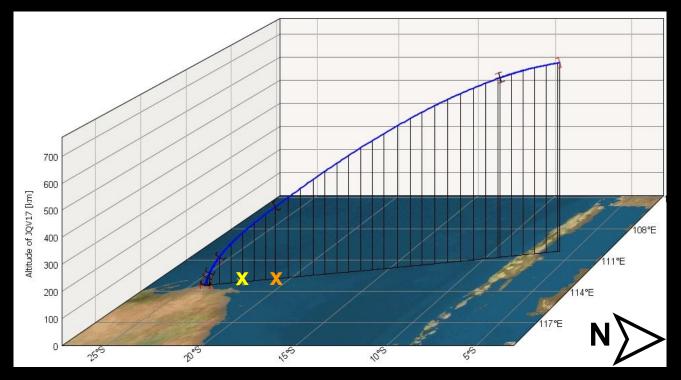
- Clear Launch Tower Before Pitch
- Attitude Control Rates (AOA, pitch, yaw)
- Final Orbit Information (inc, perigee, apogee)
- 1st Stage Splash-Down Range
- Maximum Thermal (heat flux, dynamic pressure)



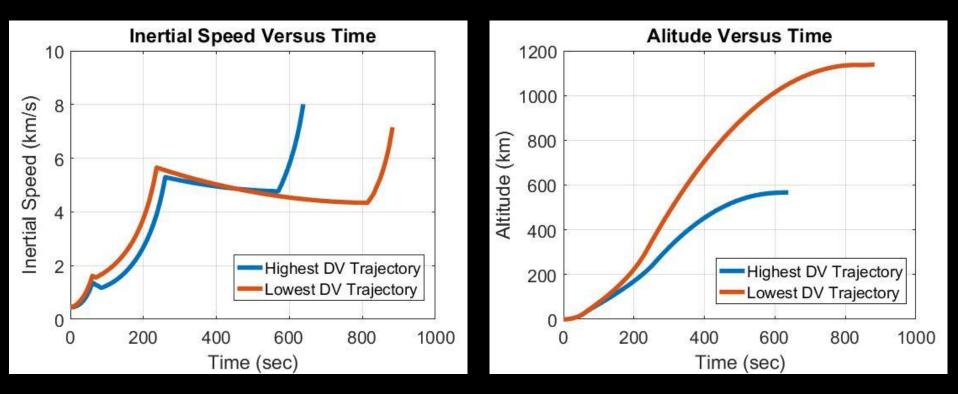
St. Helena - Highest Mission DV


Ascension Island - Lowest Mission DV

62 kg Coms Package, 625 X 1139 km, 16° inclination


Hawaii

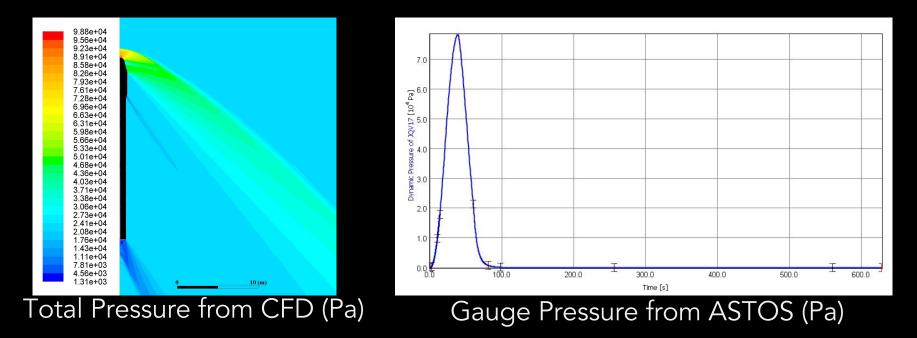
115 kg Imaging Package, 567 x 2434 km, 97.7° inclination



Western Australia

115 kg Imaging Package, 567 x 2434 km, 97.7° inclination

282

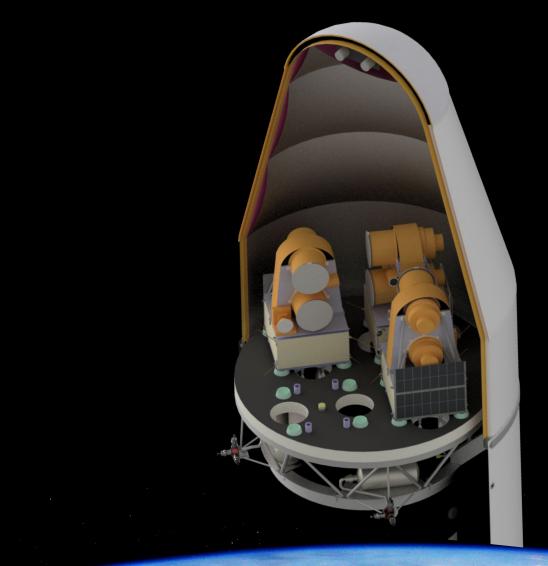

Timeline (Highest Delta V Scenario)

Event	Time Event Starts	Altitude (km)
Liftoff / S1 Start	T+0:00	0.03
Max Dynamic Pressure	T+0:45	13.5
S1 Cutoff / Coast 1 Start	T+1:00	28.5
S2 Start / Hot Separation	T+1:24	53.3
Fairing Deploy	T+1:44	73
S2 Separation / Coast 2 Start	T+5:00	254.5
S3 Start	T+9:29	560.7
S3 Cutoff	T+10:38	567

Maximum Dynamic Pressure (0.74 km/s, 13.5 km)

Source	Max Dynamic Total Pressure (kPa)
ANSYS CFD	96
ASTOS	104

A STANDARD CONTRACTOR



LAUNCH VEHICLE PAYLOAD INTEGRATION

OLIVER MORRISON

Payload Integration

Payload Integration

Axial vs. Radial Mounting

	Pros	Cons
Axial	Satellites can fit into a tighter space Ability to use very lightweight integration structure	Less room for satellites to wobble due to vibrations and release Must wait to deploy one sat after another
Radial	Ability to deploy (2) sats quickly More clearance between individual payloads	High stress areas near rings Additional structural mass added for cylindrical mounting component Difficulty fitting into a smaller fairing

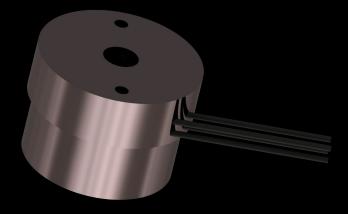
Outcome: Axial

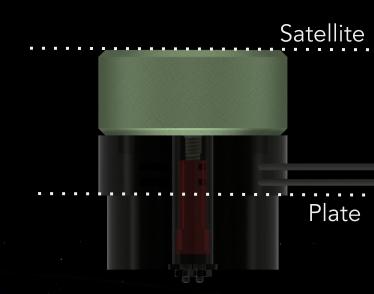
Payload Integration

Pyros vs. Actuators Release

	Pros	Cons
Pyros	Simple Common; extensive flight heritage	Very high shock Large mass, especially for redundant systems
Actuators	Very low shock Low power actuation Short command delay	Expensive Can be difficult to mount

Outcome: Split-Spool Actuators


Springs vs. Thrusters Ejection


	Pros	Cons
Springs	Lightweight	Must be added into integration Always imparting force on the payload
Thrusters	Already integrated into satellite. More controlled "push-off"	Very high danger of contaminating other satellites Need more vertical clearance for mounting

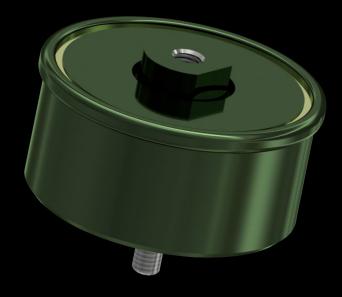
Outcome: Springs

Release Mechanism

- Release: NEA 9100 Split-Spool
 - Peak Shock: <300 g's
 - Release Time: <10 ms
 - Mass: ~70 g
 - Max. Angular Misalignment: 6° cone
 - Redundant actuator for reliability
- 1 release per satellite
 - Placed in middle of satellite with standoff to support payload

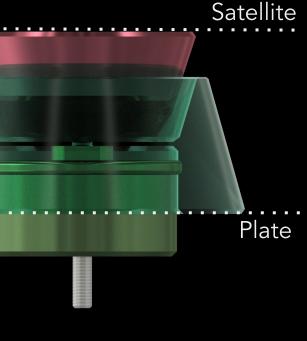
Ejection

- Spring Sizing
 - \circ 300 (+/-5) N/m stiffness
 - Compressed Length: ~34 mm
 - Stainless Steel
- Spring Standoff and Location
 - Lightweight standoff integrated into plate
 - Located near corners to avoid interference with thrusters and corners
- Residual Velocities:
 - Translational: 22 (+/-2) cm/s
 - Rotational: <1.5 deg/s



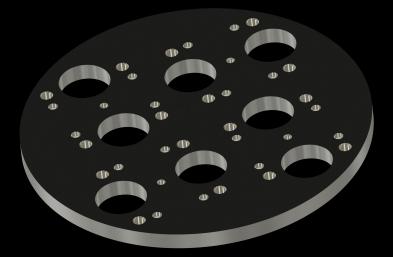
Shock Absorption

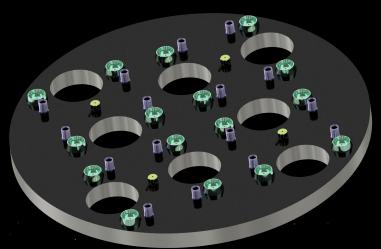
- Damper: MOOG ShockWave Isolator
 - Shock and load attenuation
 - Mass: ~80 g
 - Maximum Stroke:
 - Axial: 2.54 mm
 - Radial: 2.03 mm
 - 4 per satellite placed under conical well and bonded inside mounting plate



Satellite Interface

- Conic Well Insert
 - Used to allow lateral movement during storage and flight
 - Reduces lateral stresses
 - Frustum attached to satellite sits inside well
 - Sits atop each damper
- Conic Stand on Satellite
 - Inverse shape of well
 - ~1 mm clearance to allow movement





M - Z W R > A

Mounting Plate

- Aluminum Honeycomb Plate
 - Holes to accommodate thrusters, mount integration assembly, and reduce overall mass.
 - Carbon fiber face sheets on top and bottom
 - Masses:
 - No Components: 6.4 kg
 - W/ Components: 8.5 kg

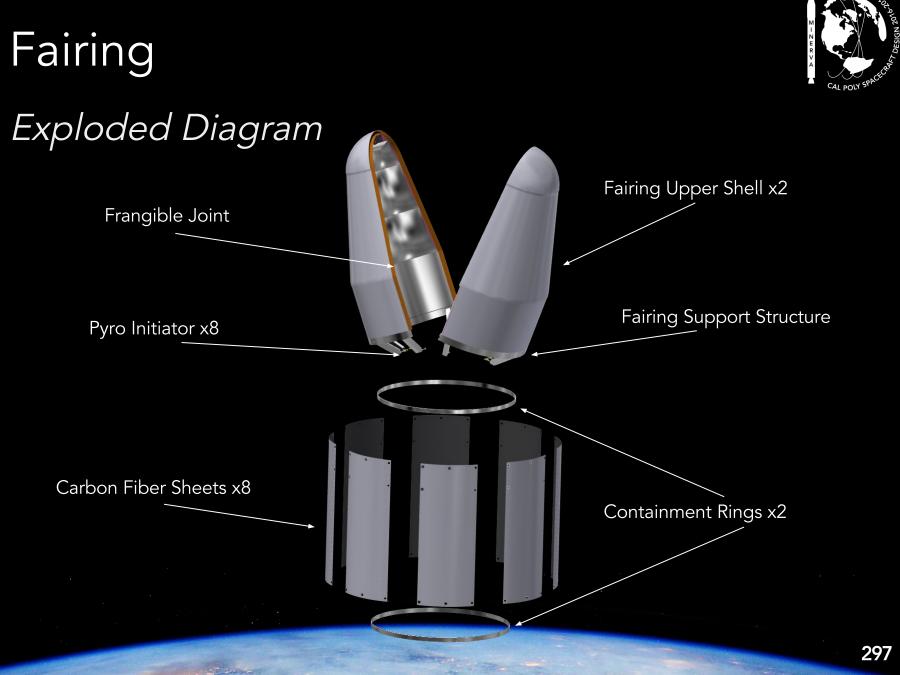
* Masses include 15% margin

LAUNCH VEHICLE FAIRING OLIVER MORRISON

295

• Size

- Total Mass: 85 kg
- Dimensions: 3.6 m x 1.47 m


Carbon Fiber housing

- Cork thermal insulation
- Fiberglass acoustic insulation layer

* Masses include 15% margin

Material/Structure Selection

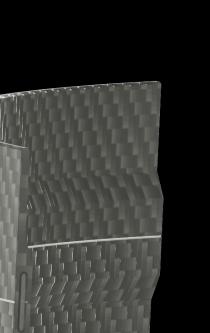
	Pros	Cons
Carbon Fiber (grid-stiffened structure)	Lightweight and stiff (structural efficiency) Very thin to allow more room inside fairing Can be manufactured using automated processes	Expensive Susceptible to rib crippling and various forms of buckling
Graphite w/ Aluminum Honeycomb Lining	Low stiffness to weight ratio Ease of purchase	Thick Needs to be cut and shaped after purchase Defects hidden in structure - requires extensive testing

Outcome: Carbon Fiber

Separation Mechanisms

	Pros	Cons
Frangible Joint	Low shock No actuation delay Lightweight	Must line entire portion of separation Difficult to custum purchase (must be manufactured)
Pyro Bolts	Good for lateral separation Can be mounted to many structures	High shock Delay between multiple systems

Outcome: Frangible Joint for Upper Housing Pyro Bolts for Vertical Separation


Third Stage Incorporation

	Pros	Cons
Fairing on Top	More fairing space for storage Common separation system	Unnecessarily increases length and mass of rocket Payloads are very small and will not utilize the space
Third Stage Incorporation	Reduces overall length and slenderness ratio of rocket	System and structural complexity

Outcome: Fairing Surrounds 3rd Stage

Separation

- Frangible Joint lines top portion of fairing
 - Bonded to inside
 - Mass: 0.97 kg
- Pyro bolts to separate containment rings
- Springs used to separate two halves of fairing once disconnected

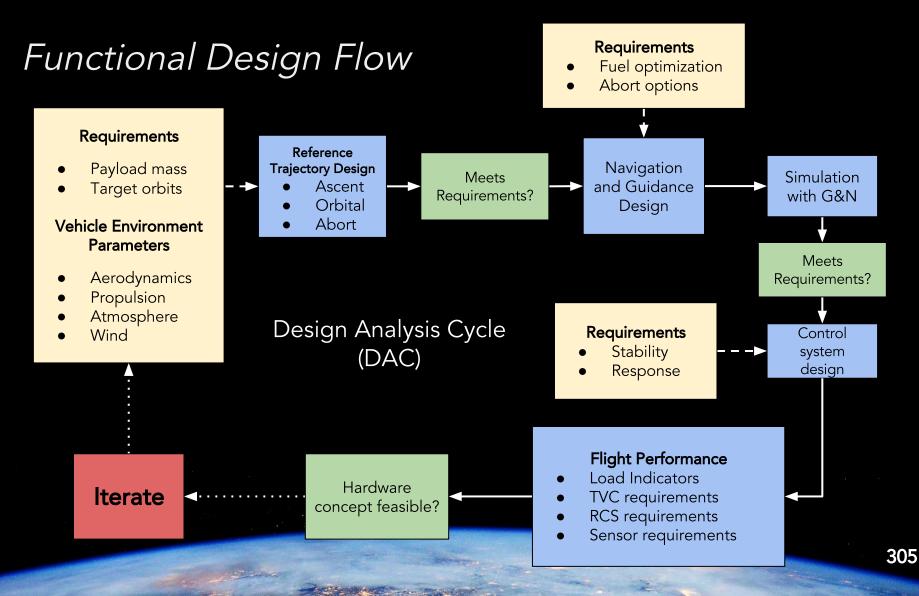
* Masses include 15% margin

Umbilicals

- Class 100,000 and humidity controlled A/C
 1.3 m³/min
- Power Supply
 - Launch vehicle: 28VSatellites: 12V
- Data connection for system monitoring and command

Environment Preservation

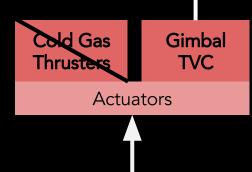
- 8 venting holes for in flight pressure bleed
 - \circ Area of hole: 0.15 m²
 - Max pressure rate: -6.8 kPa/s
- Carbon fiber venting material
- Hole covers ripped off due to drag during flight to allow full venting
- Fairing vents clean air into storage facility to maintain noncritical launch vehicle environment



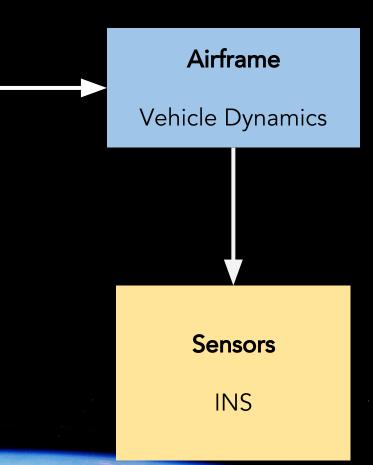
LAUNCH VEHICLE

AARON LEVIS

GN&C

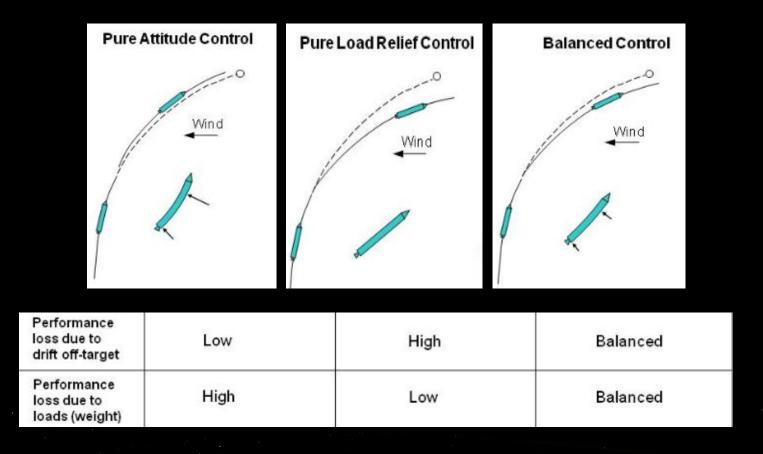


Subsystems



Open Loop Control

Utilized during first and second stage motor burns

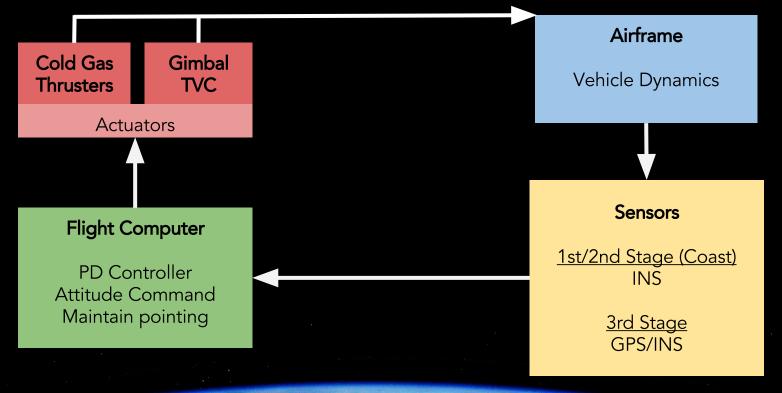


GN&C

Open Loop Wind Compensation

Open Loop Control Autonomy

During 1st and 2nd Stage Burn


- Flight Schedule
 - Timed commands dictating trajectory
 - Compensates for mean wind profile

GN&C

Closed Loop Control

Utilized during coasting portions of trajectory as well as third stage motor burn.

Closed Loop Control Autonomy

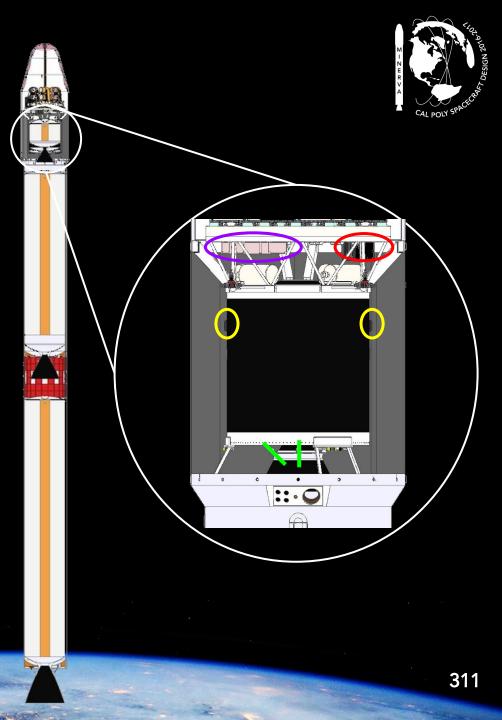
During 3rd Stage Burn

GPS/INS to R&V vector

 Velocity bleed trajectory optimization
 Compare where we are to where we want to go

 During Coasts

Thruster Allocation
 Gyro rates body/LVLH feed to PD controller

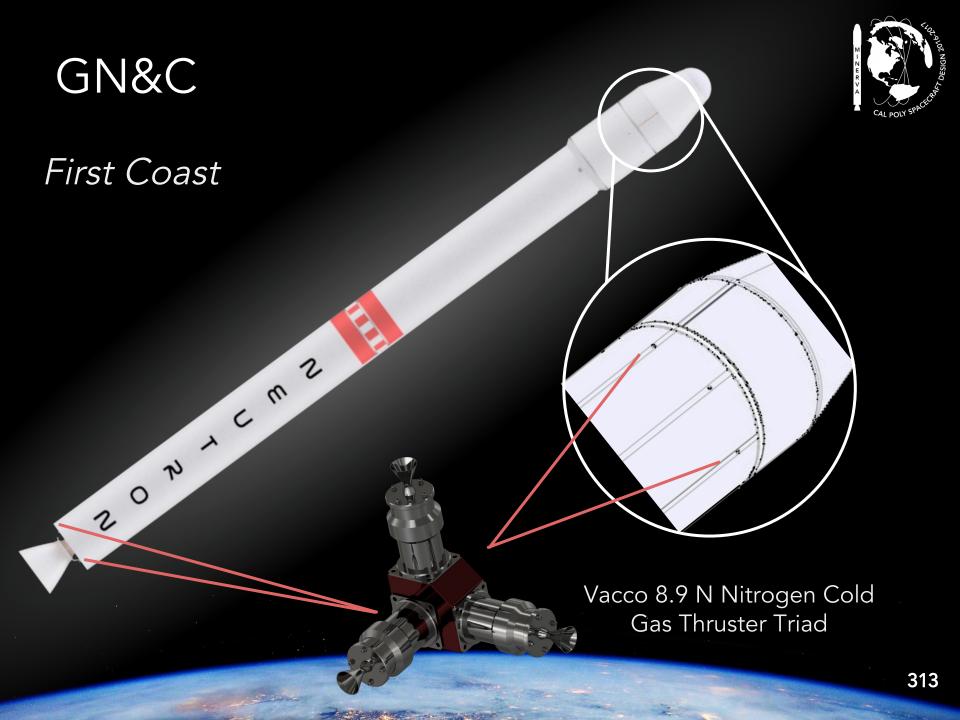

GN&C

- GPS/INS RED **PURPLE** - Flight Computers

GREEN

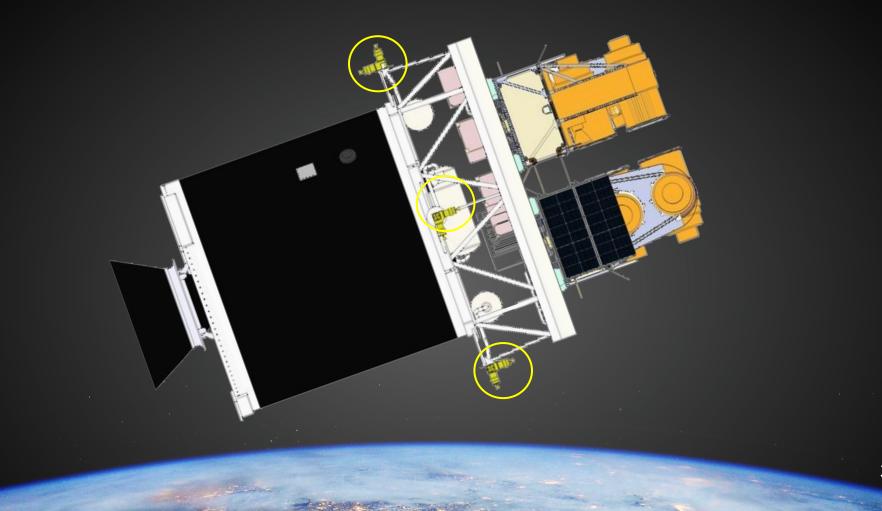
- YELLOW GPS Antenna
 - Gimbal Actuation

Phase	Control
Stage Burns	Gimbal Actuation
Coasting	Cold Gas Thrusters

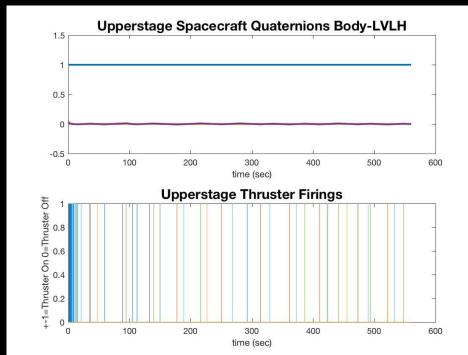


GN&C

Components Breakdown


Component	Model	Number of components
Embedded GPS/INS	Honeywell FALCN	1
Flight Computer	SpaceMicro	3
GPS Antenna	SpaceQuest ANT-GPS Active	4
Gimbal System	Orbital ATK TVECS	3 (1 per stage)
Nitrogen Cold Gas Thrusters- 1st Stage	Vacco 8.9 N Triad	2
Nitrogen Cold Gas Thrusters- 3rd Stage	Vacco 8.9 N Triad	4

Second Coast & Payload Deployment



315

GN&C

Tank Sizing

- 1st Stage Tanks
 Used during first coast
- 3rd Stage Tanks
 - Used during second coast
 - Used during payload deployment

	Total N ₂ Mass (kg)	Total Tank Mass (kg)
1st Stage	2	11
3rd Stage	8	22

Injection Accuracy

What industry does				What we	e have done	ý	
What industry does Monte Carlo trajectory simulation - Random Dispersions Thrust Profile Flight Component Accuracy Control Fidelity Vibration Profile Thermal Loading Physical Loading		injeo - Ana Valio	l margin to si ction accurac Taurus Add 25% co lyze correctiv date system r Keep ± 7 de spacing after	y ontingency ve dV requirement eg true anor	ts naly		
unch Vehicle	GPS/INS	Gyro Drift	Injection (km)	•	Non-Injection Apse (km)	Inclination (deg)	True Anon Spacing (c

					, j,	
Taurus	Honeywell H-764	0.01 deg/hr	±10	±50	±0.15	±4.1
Neutron	Honeywell FALCN	0.01 deg/hr	±12.5	±62.5	±0.19	±5.5

Injection Accuracy

LAUNCH VEHICLE

ALVARO PEREZ

Power

Battery Trade

	Pros	Cons
Lithium Ion Battery	Small, lightweight with high Watt/Amp hour capacity, allows for component testing during storage	Capacity degrades yearly
Thermal Battery	Small, lightweight and can be stored for long periods of time without maintenance	Does not allow for component testing during storage, does not provide power for complete required flight time

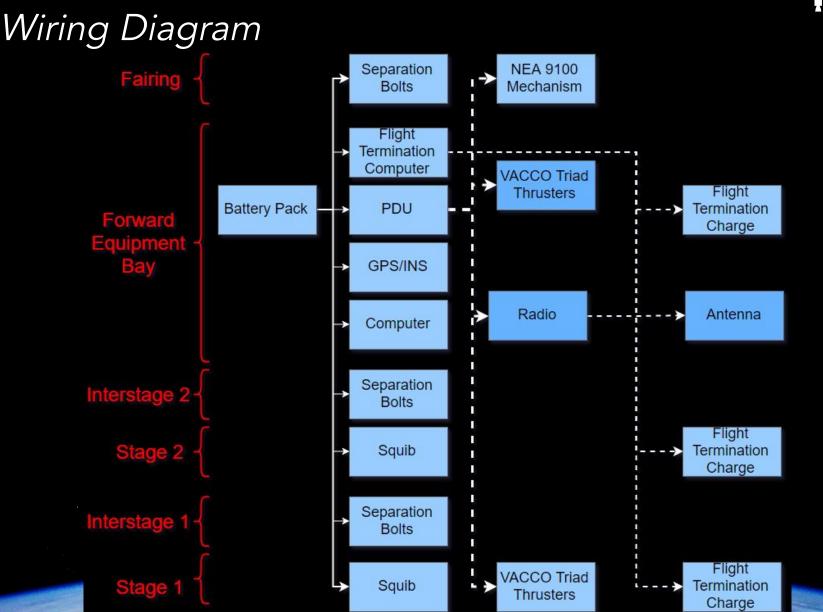
Outcome: Lithium Ion Battery

Power

Batteries

- Space Vector Lithium-Ion Cells: 56 Watt-Hour capacity
 - Voltage: 28 Volt DC nominal output
 - Discharge: 20 A continuous with 100 A pulses
 - Mass: 0.73 kg
 - Located in forward equipment bay
 - Powers all electronic systems
- Gimbal Systems powered by thermal battery provided by Orbital ATK
 - Powers gimbal system and ignition
 - Located on Orion motors

Power Budget


	Component Quantity		Watt-Hour	
Stage 1,2,3 Motors	Squib	3	3.00E-04	
Stage 1,2,5 MOLOIS	Cold Gas Thrusters	6	2.58	
Interstages	Separation Bolts	12	9.00E-04	
	Computer	3	4.21	
	GPS/INS	1	56.25	
Forward Equipment	Radio	1	4.17	
Bay	Autonomous Flight Termination System	1	20.44	
	Cold Gas Thrusters	12	100	
Payload Area	Payload Separation System	4	2.20E-03	
Total Watt-Hours Required (with 25% contingency)				
Watt-Hours Supplied (after 5 year battery degradation) 224				

5 Space Vector Lithium-Ion Cells: 280 Watt-Hour capacity total

Gimbal systems powered by thermal battery provided by Orbital ATK

Power

LAUNCH VEHICLE

ALVARO PEREZ

TT&C

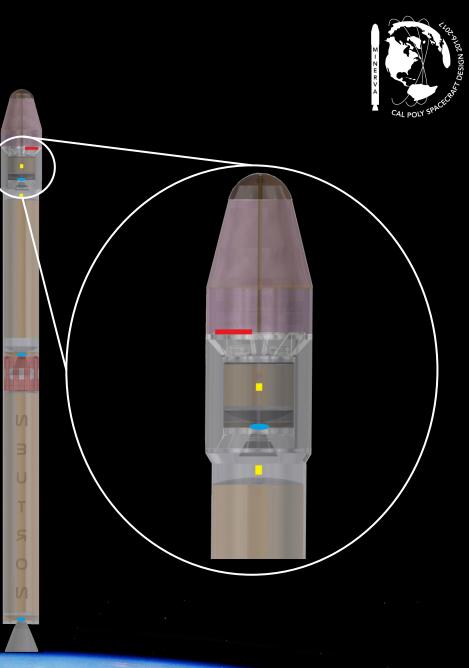
Telemetry

LV TT&C Budget

- Omni-slot Patch
 - 4 dB peak gain
 - o 4 Antennas
 - Omnidirectional
 - \circ On each side of LV
- No downrange ground stations required
 - Communication with launch site only

Link Budget	Uplink	Downlink		
Frequency	300	MHz		
Data Rate	9.6 k	bit/s		
Ground Gain	12 dB			
LV Gain	4 dB			
Power (RF)	0.25	5 W		
G/T	-20.7	-12.7		
EIRP	6 dBW -2 dBW			
Target SNR	10.5 dB			
Link SNR	24.3 dB			
Margin	13.8 dB			

TT&C


Autonomous Flight Termination System

- LJT & Associates Autonomous Flight Safety System
 - Flight sensors
 - GPS receiver
 - o IMU
 - Flight termination logic circuitry
 - Approved flight algorithms
- Charges: Orbital ATK Destruct Conical Shaped Charge
 - 500 gram C4 charge
 - Long term storage

TT&C

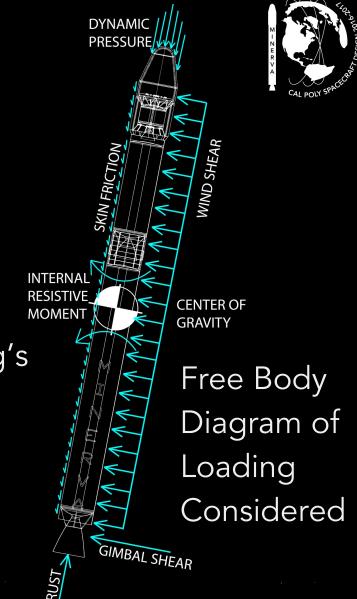
Component Location

Blue - Destruct Charge Red - Battery Pack and Termination Computer Yellow - Patch and GPS Antennas

LAUNCH VEHICLE STRUCTURES NIC LEWIS

326

Structural Requirements (per ESA)


"The structure shall support the payload and spacecraft subsystems with sufficient strength and stiffness to... "

- Preclude any failure that may impinge upon operation
- Prevent buckling/permanent deformation
- Generate fundamental frequencies of structures dissimilar enough to avoid dynamic coupling with major excitation frequencies and other structures' vibrations

Loads Analysis

Maximum Quasi-Static Loads

- Thrust: 668 kN
- Inertial Load: Σ Mass above POI, Accelerated @ 10.7g's
- Gimbal Shear: 58 kN
- Dynamic Pressure: 80 kPa
- Skin Friction Drag: 85 kN
- Wind Loading: Undetermined

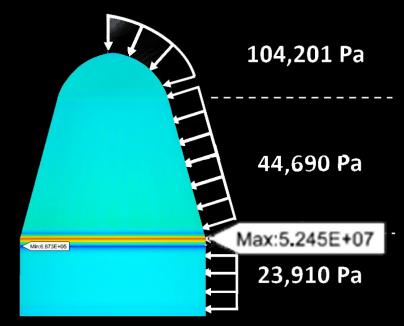
Continuous Load Path from nose of Launch Vehicle to tail shown in red

6

 6 Structural Components Required Design to Satisfy Preliminary Configuration of Solid Rocket Boosters

 Purchased motors assumed to be capable of withstanding axial/flexural loads

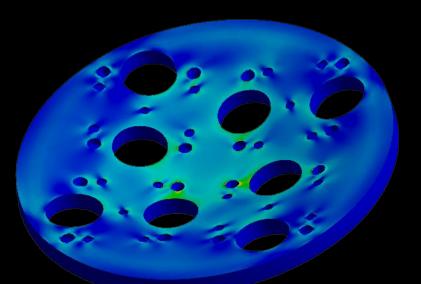
Structural Assumptions for simplified preliminary Launch Vehicle design


- All designed component masses not comprised of propellant increased by 25%, COTS masses by 15%
- Inertial and thrust loading accounted for via analysis, stresses from undetermined dynamic loading accounted for with conservative safety factors

Launch Vehicle Components

• FEA Results - Fairing

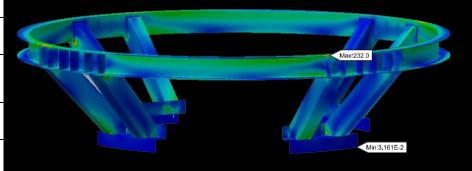
Parameter	Value
Material	Filament Wound CFRP
Mass (with 25% margin)	30.875 kg
Expected Load	Max Dynamic Pressure
Maximum Stress	52.5 MPa
Min Factor of Safety	10.9 (Linear Static) 1.2 (Linear Buckling)


Superimposed Von Mises Stress and Loading Diagram (Pascals) Note: Loading and Stresses radially symmetric about vertical axis

Launch Vehicle Components

• FEA Results - Payload Interface Plate

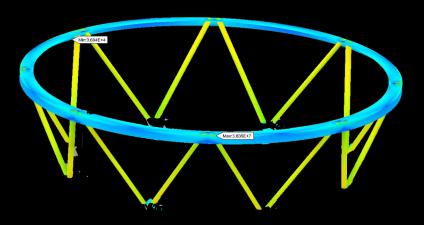
Parameter	Value
Material	Aluminum Honeycomb/CFRP
Mass (with 25% margin)	8 kg
Expected Load	Inertial Load = 2.7 kN
Maximum Stress	151.5 MPa
Min Factor of Safety	3.3



Launch Vehicle Components

• FEA Results - Fairing Support

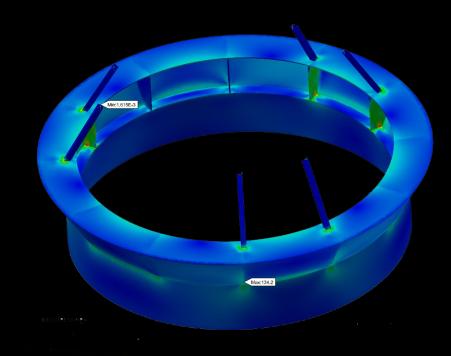
Parameter	Value	
Material	Aluminum 6061	
Mass (with 25% margin)	16.25 kg	
Expected Load	Inertial Load x 4 (Factor) = 37.5 kN	
Maximum Stress	232 MPa	
Min Factor of Safety	1.77	



Launch Vehicle Components

• FEA Results - Payload Interface Plate Support Truss

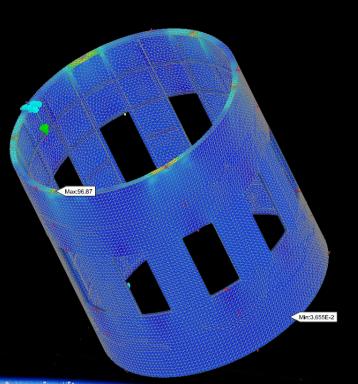
Parameter	Value
Material	Aluminum 6061
Mass (with 25% margin)	7 kg
Expected Load	Inertial Load = 30.6 kN
Maximum Stress	38.4 MPa
Min Factor of Safety	9.3



Launch Vehicle Components

• FEA Results - Second/Third Interstage

Parameter	Value
Material	Aluminum 6061
Mass (with 25% margin)	13.75 kg
Expected Load	Inertial Load = 126.5 kN
Maximum Stress	134 MPa
Min Factor of Safety	2.38



Launch Vehicle Components

• FEA Results - First/Second Interstage

Parameter	Value
Material	Filament Wound CFRP
Mass (with 25% margin)	71 kg
Expected Load	Inertial Load + Thrust = 1868 kN
Maximum Stress	97 MPa
Min Factor of Safety	4.28

LAUNCH VEHICLE

JAVIER BUSTAMANTE

Thermal Environment - Flight Phase

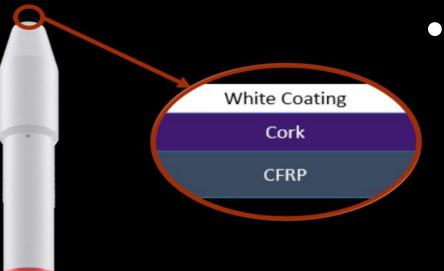
- Aerodynamic Heating
 - Vehicle geometry
 - Surface material characteristics
 - Atmospheric parameters
 - Vehicle trajectory
- Radiative Heating
 - Base jet exhaust plumes
 - Hot components

Components Throughout the L.V

• Thermal isolation from engines

Section in LV	Component	Allowable Temperature Range (°C)	
Interstage 1/2	Flight Termination Charge	-54 to 71	
Stage 3	Radio	-30 to 85	
Forward Equipment Bay	Computer	0 to 70	
	Lithium Ion Batteries	-20 to 70	
, ,	GPS Receiver	-49 to 50	
Payload	Imaging/Comm Satellite	10 to 50	

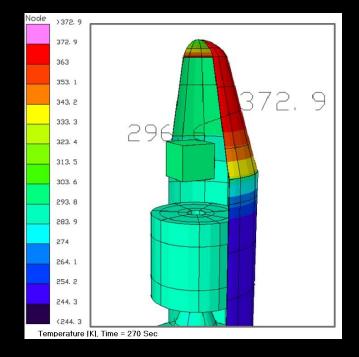
Thermal Protection System - Base Regions


- Orbital ATK Motor Purchase
 - Orion 50S XLG
 - Orion 50XL
 - Orion 38
- Require a flexible TPS
- Minimize integrated mass

Orion 38 - High performance third stage motor

Fairing Analysis - Insulation Layers

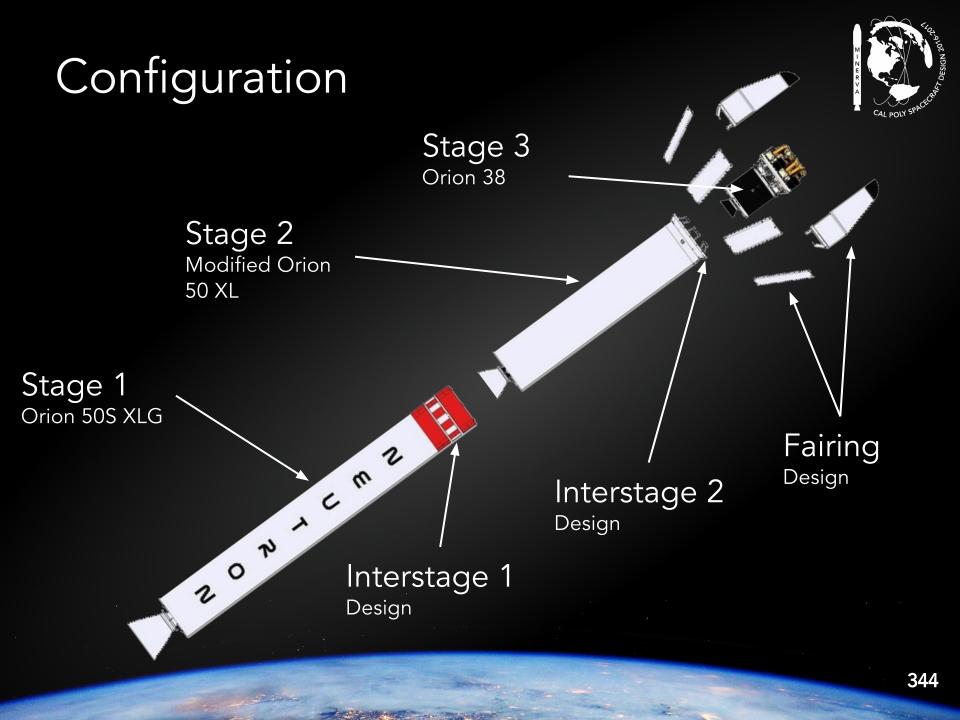
- Desired Material Characteristics
 - High specific heat
 - Low conductivity
 - Low density

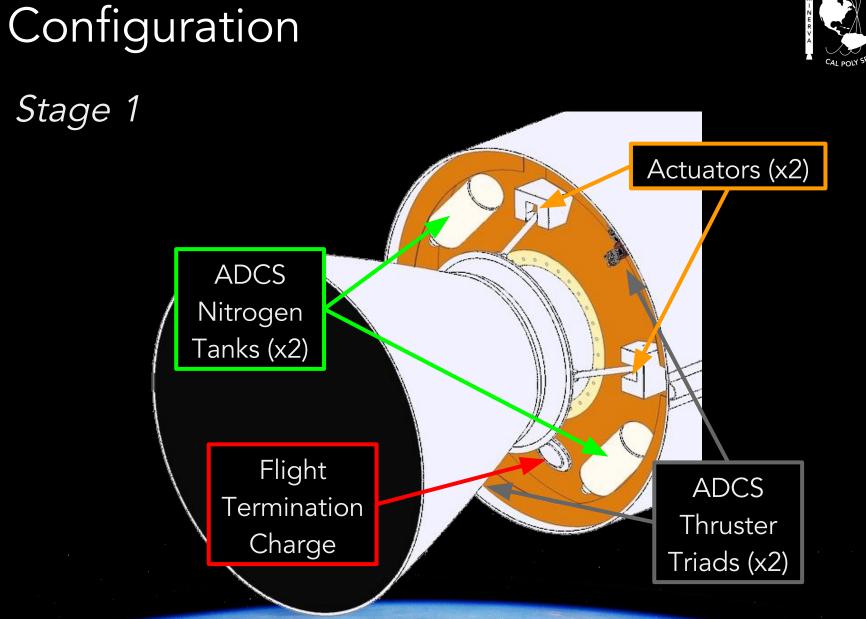

Materials	Nose Cap (mm)	Conical (mm)	Cylindrical (mm)	Mass (kg)
White Coating	0.3	0.3	0.3	1
Cork	12	7	0	13

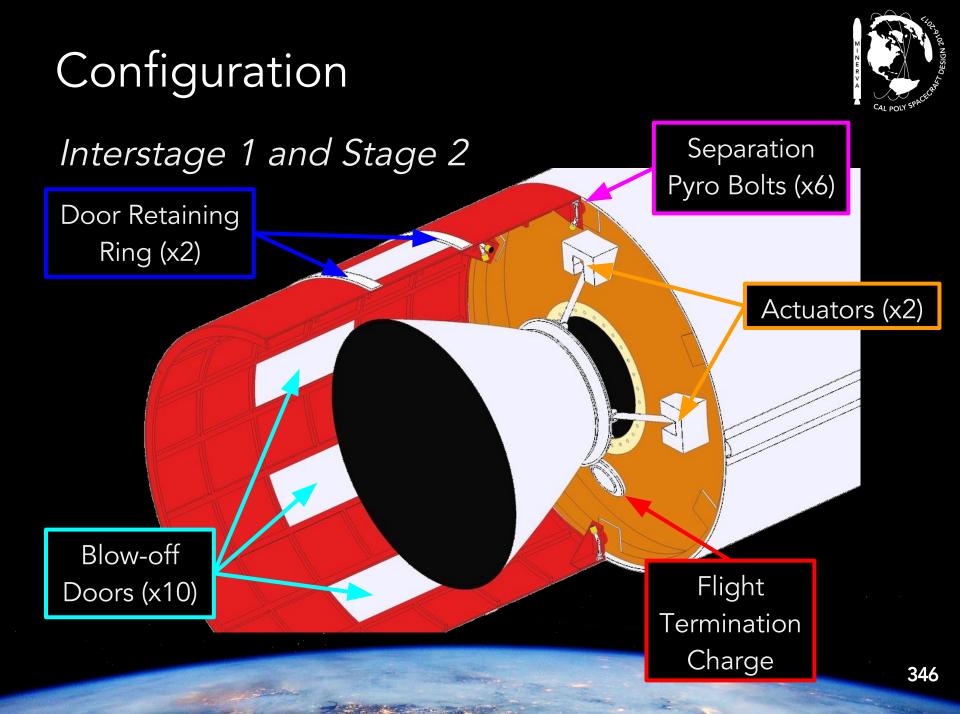
Fairing Analysis - Payload Environment

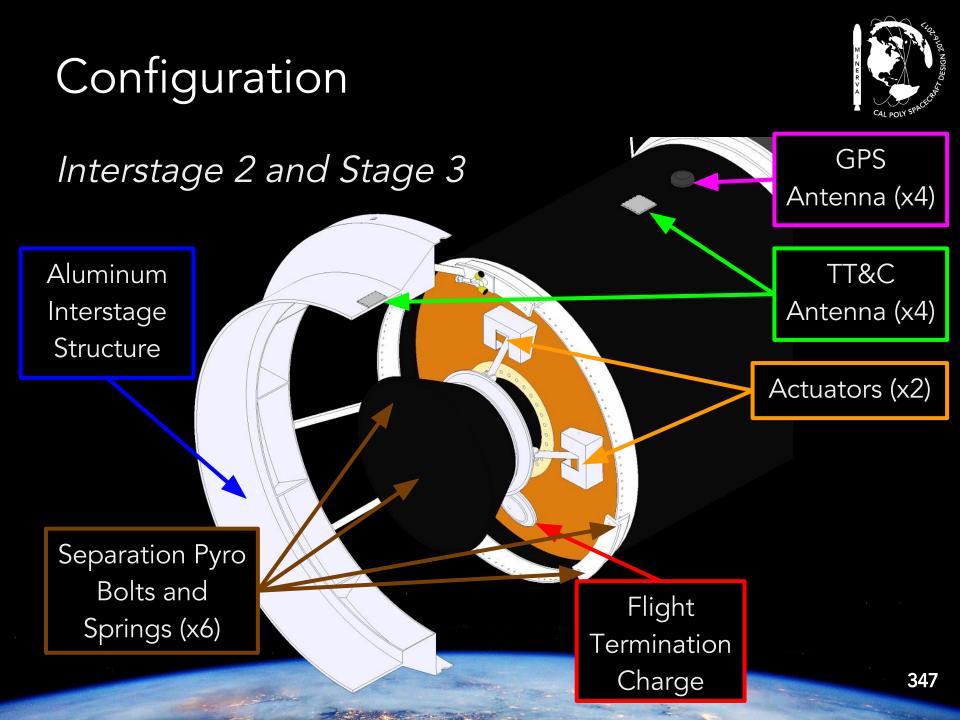
- Resin temperature limit 395K
- PLF jettisoned below 1135 W/m²
- Note that max temp occurs on conical region

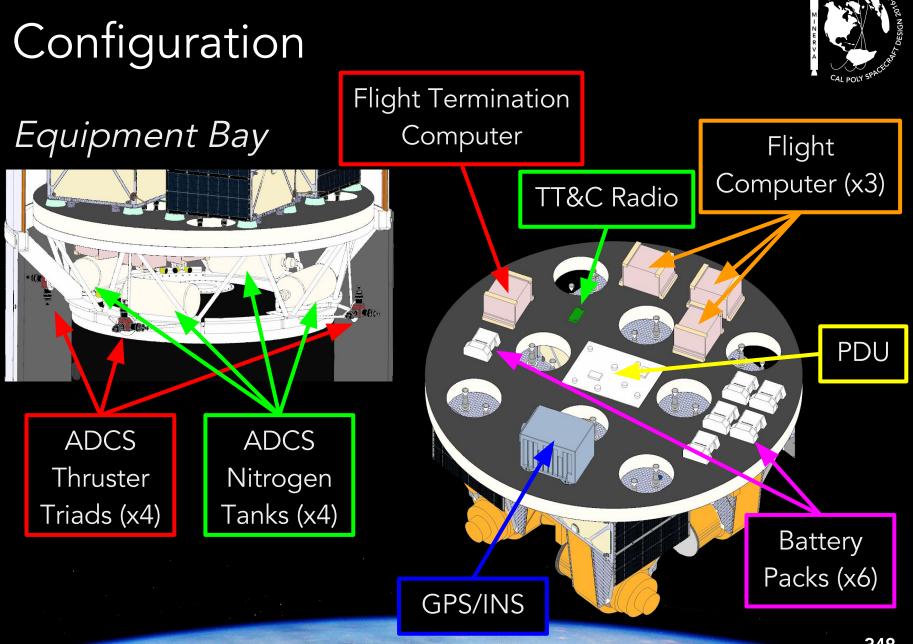
Max Heat Flux (W/m²)	Max Temp with Insulation (^o C)	Observed Payload Temp (^o C)
60,000	97	23

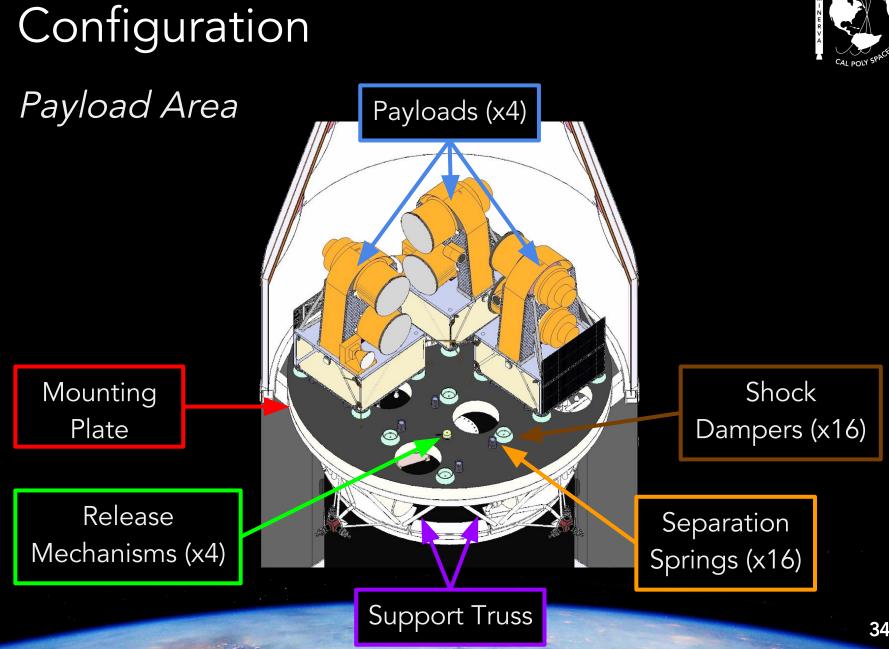


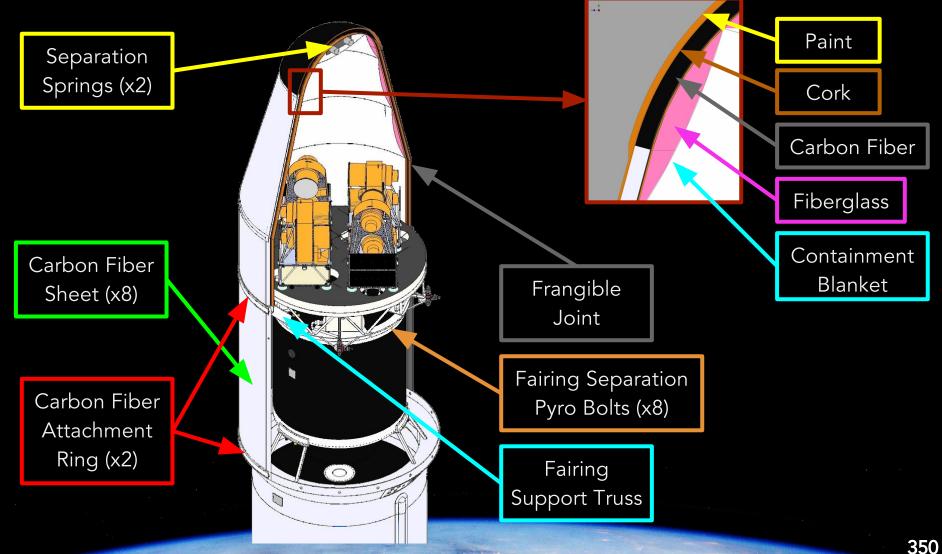

Transient analysis performed up to fairing jettison (t ≅270 sec)


LAUNCH VEHICLE CONFIGURATION BEN KRAGT


343







Fairing Configuration

Stage 1 & Interstage 1

Stage	Component	Mass (kg)	% Margin	Mass w/ Margin (kg)	Total Mass w/ Margin (kg)
	Propellant	15,034	0	15,034	
	Stage Dry Mass	1,080	0	1,080	
1	Gimbal Package	38	0	38	16,171
	ADCS	14	25	17	
	Flight Termination	2	15	2	
Interstage 1	Structure	57	25	71	75
	Separation System	3	25	4	

Stage 2 & Interstage 2

Stage	Component	Mass (kg)	% Margin	Mass w/ Margin (kg)	Total Mass w/ Margin (kg)
	Propellant	9482	0	9482	
	Stage Dry Mass	712	15	819	
2	Gimbal Package	36	0	36	10,339
	Flight Termination	2	15	2	
	Structure	11	25	14	
Interstage 2	Separation System	1	25	1	23
	A/C Attachments	7	15	8	

Stage 3 & Equipment Bay

Stage	Component	Mass (kg)	% Margin	Mass w/ Margin (kg)	Total Mass w/ Margin (kg)
	Propellant	770	0	770	
3	Stage Dry Mass	103	0	103	
	Gimbal Package	21	0	21	896 67
	Flight Termination	2	15	2	
Equipment Bay	Avionics	25	15	30	
	ADCS	30	25	37	

Payload Area & Fairing

Area	Component	Mass (kg)	% Margin	Mass w/ Margin (kg)	Total Mass w/ Margin (kg)
Payload Area	Payload Mounting	8	25	10	
	Support Truss	6	25	7	132
	Payload	115	0	115	
Fairing	Shell (All Layers)	47	25	59	85
	Carbon Fiber Sheet and Mounting	6	25	8	
	Separation	2	25	2	
	Support Truss	13	25	16	
Total Vehicle Mass					27,788

BREAK

at the sec

355

Coffee Break Trivia

T/F: ICBMs have been re-outfitted to become solid booster launch vehicles

Coffee Break Trivia

True. A direct example is the Dnepr rocket. An indirect example is the Minotaur C whose first stage was based off the ICBM Peacekeeper.

ICBMs employ solid boosters ready to launch at an instant

GROUND SECTION 8 OF 9

Ground Outline

- System Requirements
- Ground Segment Timeline
- Launch Sites
- Launch Pad
- Ground Stations

GROUND SYSTEM REQUIREMENTS NASH REIMER

360

System Requirements

Requirements Flowdown

RFP Requirements

- No pre-deployment
- No use of military infrastructure
- 5 year storage

Launch Vehicle Requirements

- Downrange communication
- Fast launch capability

Satellite Requirements

- Image downlink
- TT&C

Launch Site Design

- Location selection
- Launch pads
- Launch vehicle and satellite storage

Ground Station Design

- Location selection
- Antennas

System Requirements

Customer

- All system infrastructure must be politically stable locations
- Adhere to U.S. and international regulations
- No existing government/military infrastructure
- No pre-deployed systems
- Provide reliable 5 year storage support
- Help launch vehicle satisfy 12hr/25% 24hr/100% requirement worldwide
- Help satellites to downlink images as quickly as possible after capture

GROUND GROUND SEGMENT TIMELINE NASH REIMER

Ground Segment Timeline

Pre-Command Operations

- Launch site command center staffed
- Trajectory, orbits, and launch order library creation
- Orbital body tracking projections
- Satellite and launch vehicle storage
- Satellite monitoring
- System maintenance

Ground Segment Timeline

Pre-Launch

- Trajectory, orbits, and launch order identification
- Satellite startup and system checks
- Data upload
- Building removal and strongback raising
- Ordnance arming
- Power switch over and antenna checks
- Umbilical removal

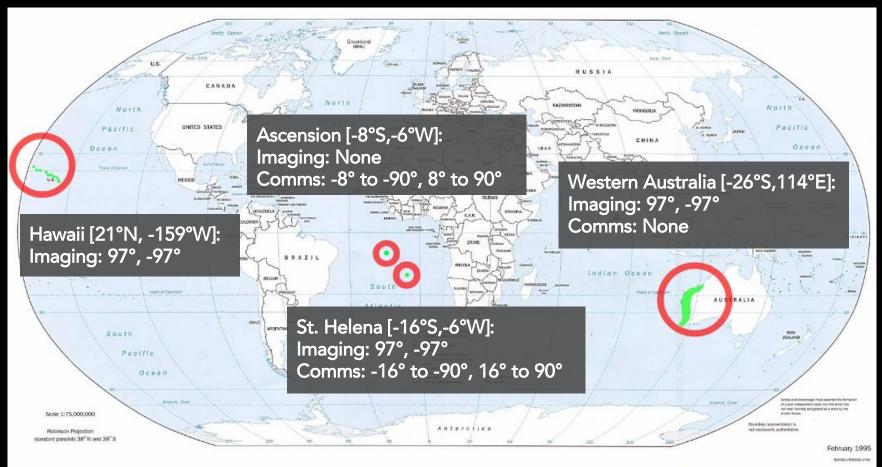
Ground Segment Timeline

Post-Launch

- Downrange tracking of launch vehicle
- Downlinking stations become active

ground LAUNCH SITES

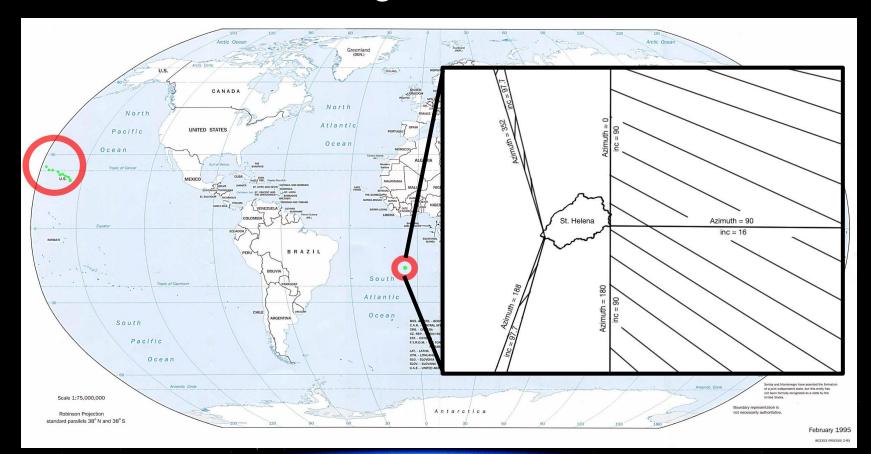
ANDREW KLEVE



Launch Locations Evaluated by:

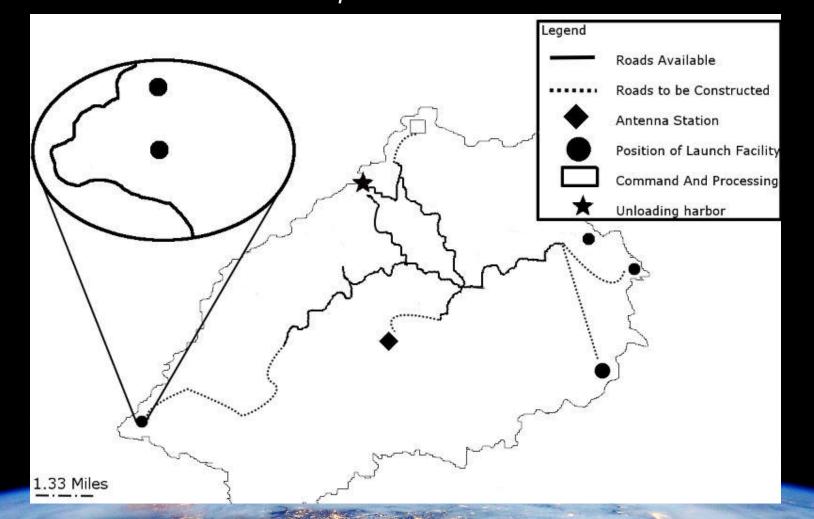
- Launch azimuths to meet required orbit inclinations
- Political stability (evaluated with fragility index)
- Range safety
- Risk of natural disaster occurring at launch site
- Weather

Launch Site Selection

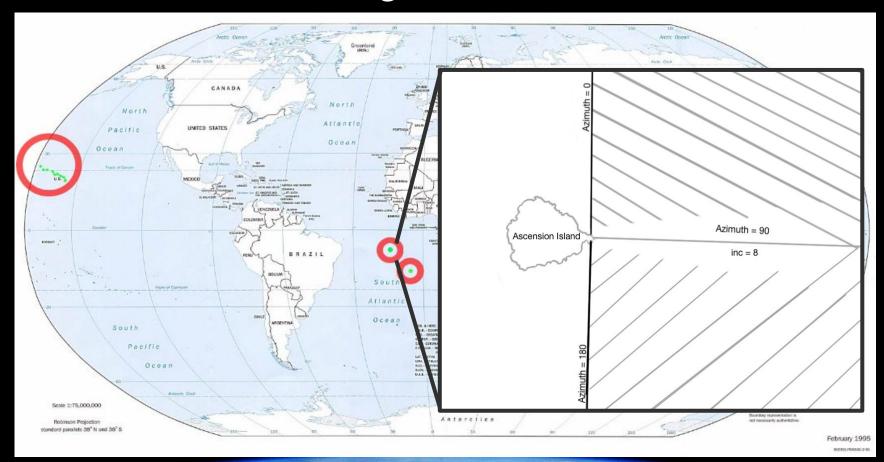

Launch Pad Distribution

- 17 total launch pads distributed among 5 major launch sites
- 11 successful vehicles (6 are redundant) are required to provide full coverage

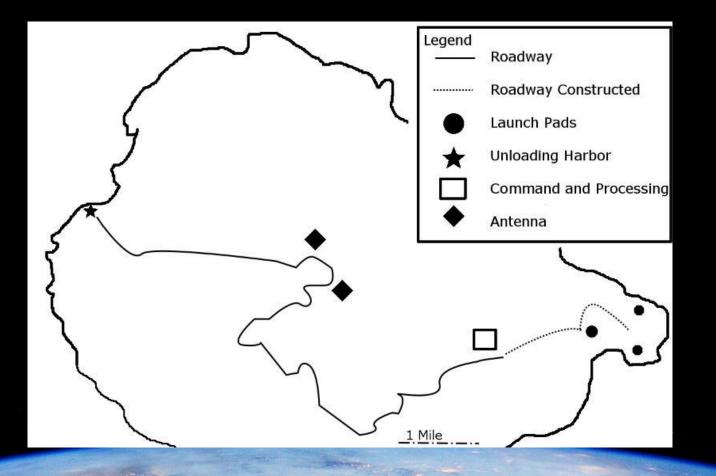
	Imaging	Comms
Hawaii (Oahu)	3	
St. Helena (West and East sides of the island)	2	3
Western Australia	6	
Ascension		3



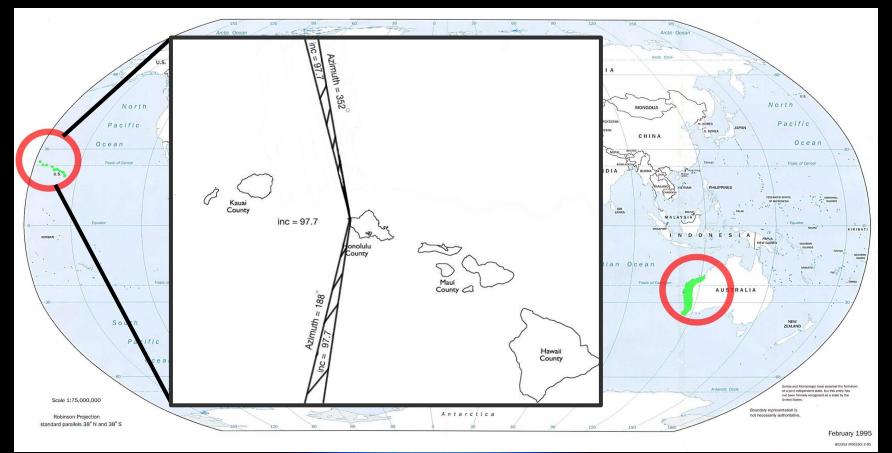
St. Helena Launch Range



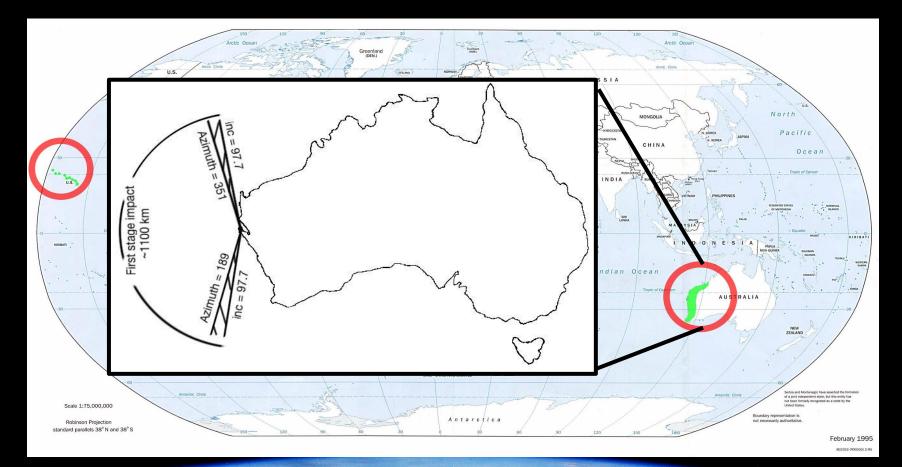
Saint Helena Site Map



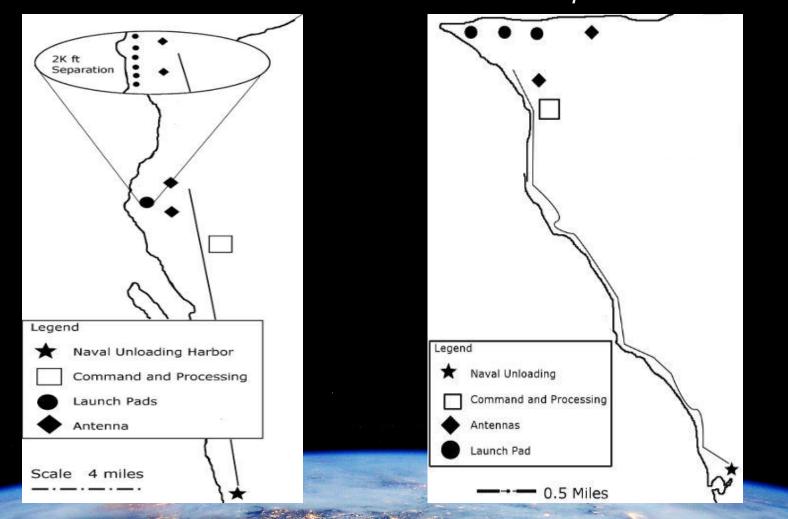
Ascension Launch Range



Ascension Site Map



Hawaii Launch Range



Australia Launch Range



Western Australia and Oahu Site Map

Launch Window Visualization -- Imaging Launches

378

Launch Window Visualization -- Imaging Launches

• Large Launch windows allow for weather avoidance

Latitude Range	Natural Disasters since 2000	Comm Launch Window per 24 hrs	Imaging Launch Window per 24 hrs
± 60° to 90°	15	7.3	<2
± 50° to 60°	47	13.3	<2
± 40° to 50°	146	13.8	5.8
± 30° to 40°	357	13.7	10.1
± 20° to 30°	201	7.7	10.1
± 10° to 20°	214	12.0	12.4
-10° to 10°	260	13.6	14.3

ground LAUNCH PAD

SCOTT JORGENS

Requirements of Launch Pad:

- Store launch vehicle for at least 5 years
- Launch as soon as 1 hour after deployment request
- Temperature and humidity control
- Supply power
- Protect launch vehicle from weather

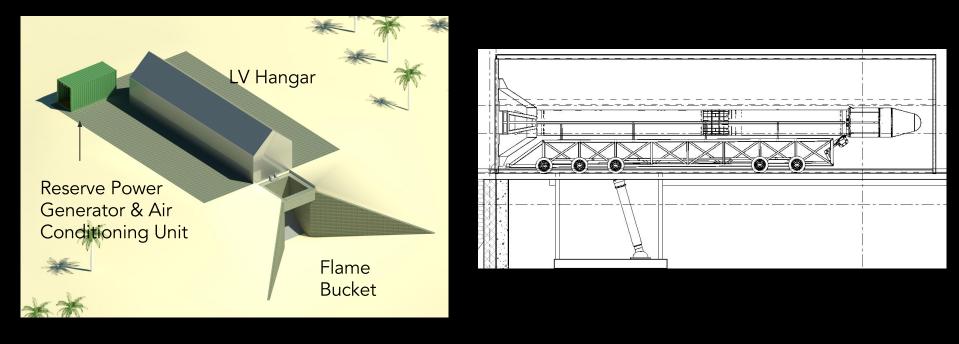
Why we chose to build our own:

- No government/military infrastructure
- Commercial infrastructure
 - Not feasible to use because of response time
 - Customer prefers its own infrastructure
- Able to design to best fulfill mission requirements

Above vs. Below Ground Storage Trade

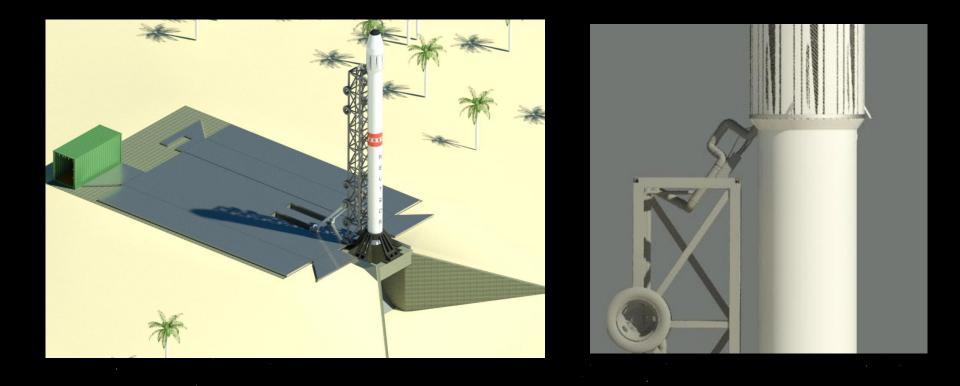
Option	Pros	Cons
Above Ground	Easier to construct Easier to install Simpler infrastructure	Needs protection
Below Ground	Protected by ground	Difficult construction Difficult installation Complex infrastructure

Outcome: Store Above Ground

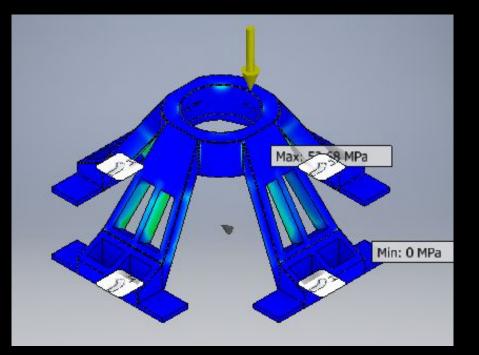

Horizontal vs Vertical Storage Trade

Option	Pros	Cons
Horizontal	Easier to integrate Easier access Simpler infrastructure	Needs to launch vertical
Vertical	Already vertical	More difficult integration More difficult access Complex infrastructure

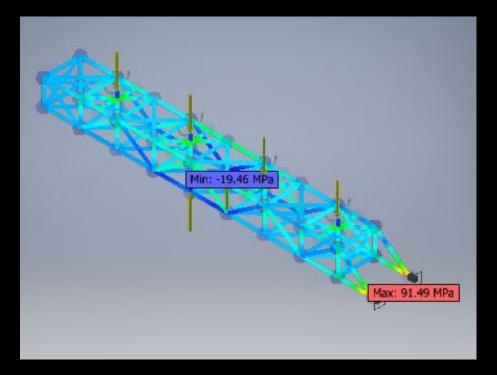
Outcome: Store Horizontally



Infrastructure - Stored Position


Infrastructure - Raised Position

Structural


Component	Stand	
Material	Steel	
Max. Stress	52.68 MPa	
Min. Factor of Safety	3.9	

Structural

Component	Strongback
Material	Mild Steel
Max. Stress	91.49 MPa
Min. Factor of Safety	2.25

ground GROUND STATIONS

AIRIANNA HERNANDEZ

Ground Station Requirements

Imaging Satellites

- Image Downlink
- TT&C

Communication Satellites

• TT&C

Launch Vehicles

• TT&C

Ground Stations

Full Ground System

Ground Stations

Ground Antenna Trade

Antenna Type	Pros	Cons
Dish	High gain Customizable	Higher cost Low Beamwidth
Yagi-Uda	Low cost Wider beamwidths Small sizes	Low gain Not feasible for high freq.
Omni-Directional	Low cost No tracking required	Zero/negative gain Not feasible for high freq.

Outcome: Dual-Band Dish for Imaging Ground Station Yagi for Comms and Launch Vehicle Ground Station

Ground Stations

Ground Communications and Downlink Hardware

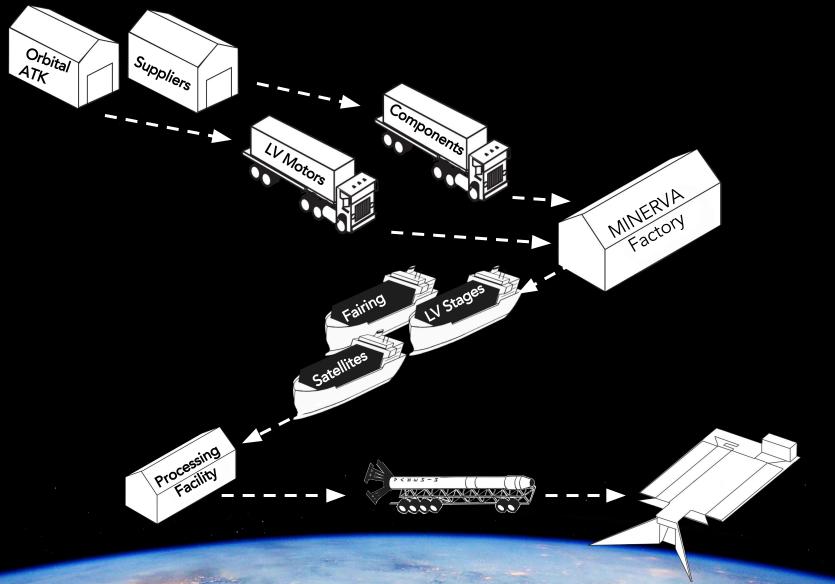
	Launch Site	Communications	Imaging
Hardware	12dB Yagi w/ Advanced Radio Solutions TAS-50	12dB Yagi	2x 5 m diameter UHF - Ka dual band dishes w/ 61dB peak gain
Elevation Angles	0° - 110°	15° Above horizons	15° Above horizons
Operator/Lender	Minerva System	KSAT/LANSAT	KSAT
Locations	At Launch Sites	Singapore/Ecuador	Norway/Canada/ Antarctica

NISSION EECTION 9 OF 9

Mission Lifecycle Outline

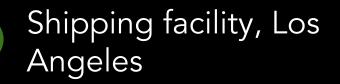
- Manufacturing
- Satellite AI&T
- Launch Vehicle AI&T
- Reliability
- Cost

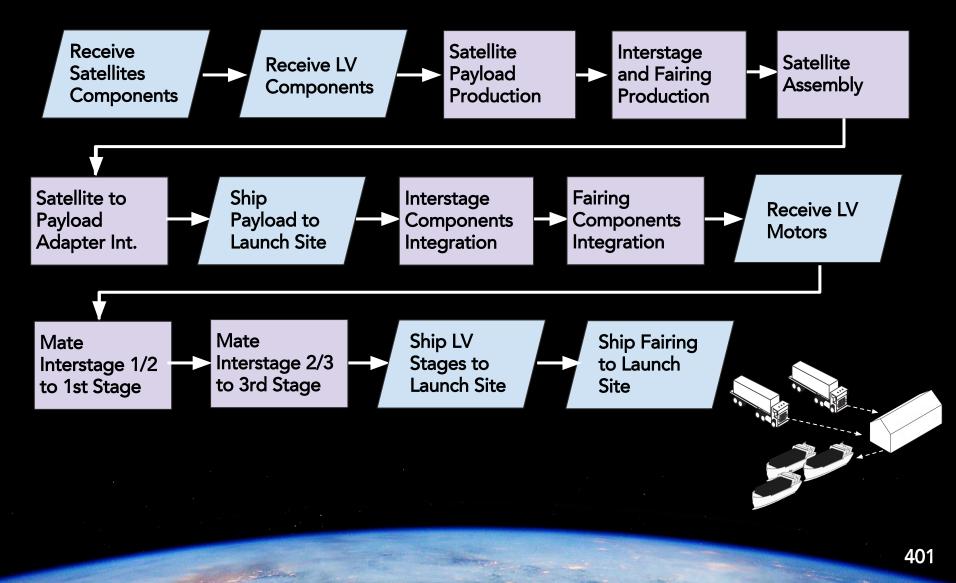
MISSION LIFECYCLE MANUFACTURING


JERALYN GIBBS

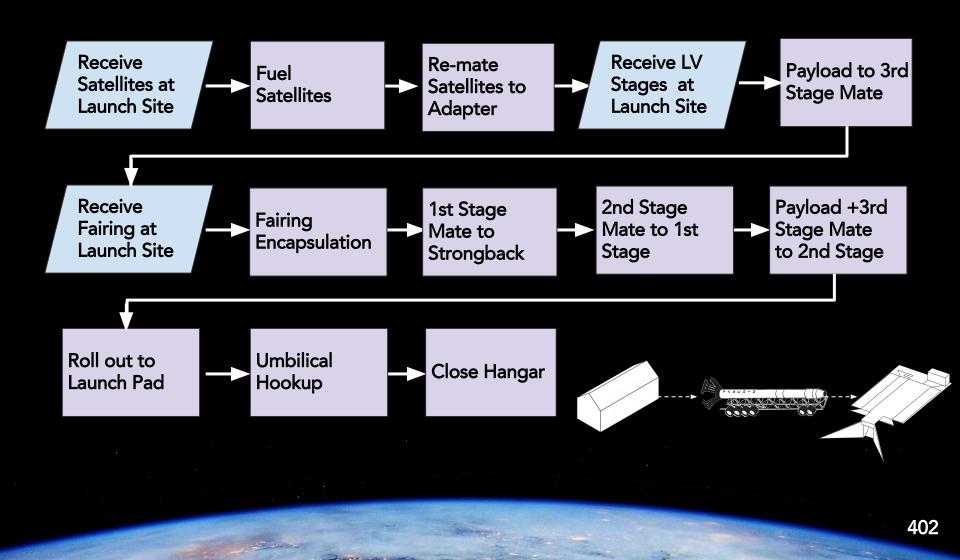
Development Timeline

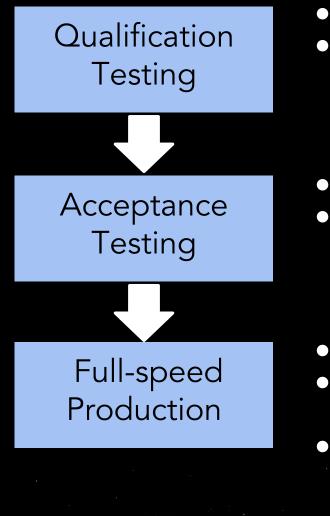
Year	0	1	2	3	4
LV Motor					
LV Component S	hipping				
LV Component T	esting				
LV Flight Testing					
LV Full Speed Al	&T				
Satellite Compor	nent Shipping				
Satellite Compor	nent Functionality Testin				
First Satellite Set	Qualification Testing				
Next 5 Satellite S	Sets Acceptance Testing				
Satellite Compor	nent Shipping				
Satellite Compor	nent Functionality Testin				
Satellite Full Spe	ed AI&T			e de la companya de l	
System Shipping					
System Launch S	ite Integration				





Orbital ATK Facility, Utah • Solid Motors

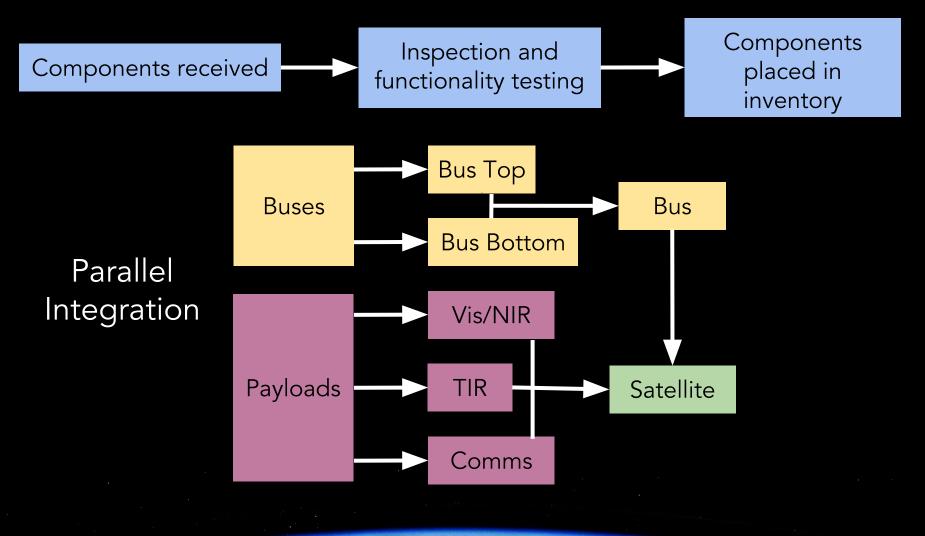

Minerva Manufacturing Facility, Nevada • Launch Vehicles and Satellites



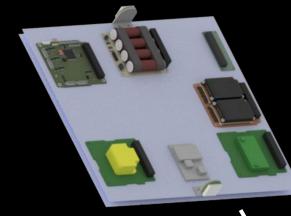
MISSION LIFECYCLE SATELLITE AI&T

JERALYN GIBBS

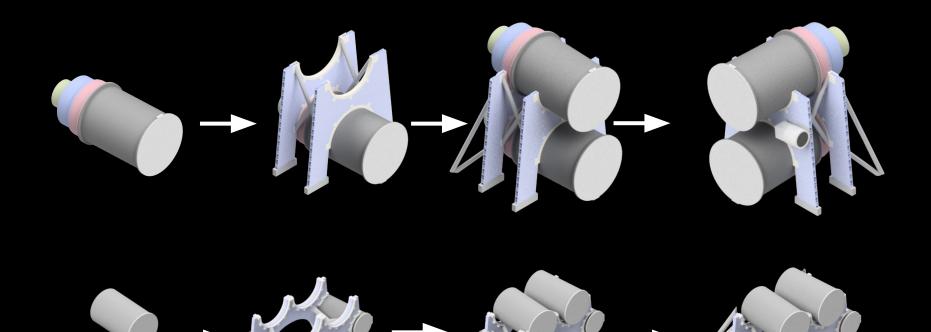
403



First satellite of each type
Additional on-orbit testing during launch vehicle flight tests

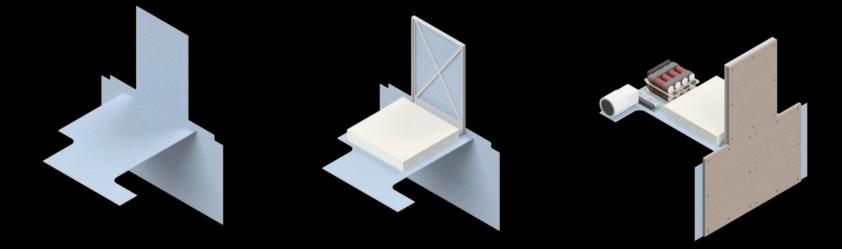

- Next satellites of each type
- Used for flight testing of launch vehicles
- Approximately 2 satellites/week
- Workmanship, functionality testing
- Full acceptance testing on every 5th satellite of each type

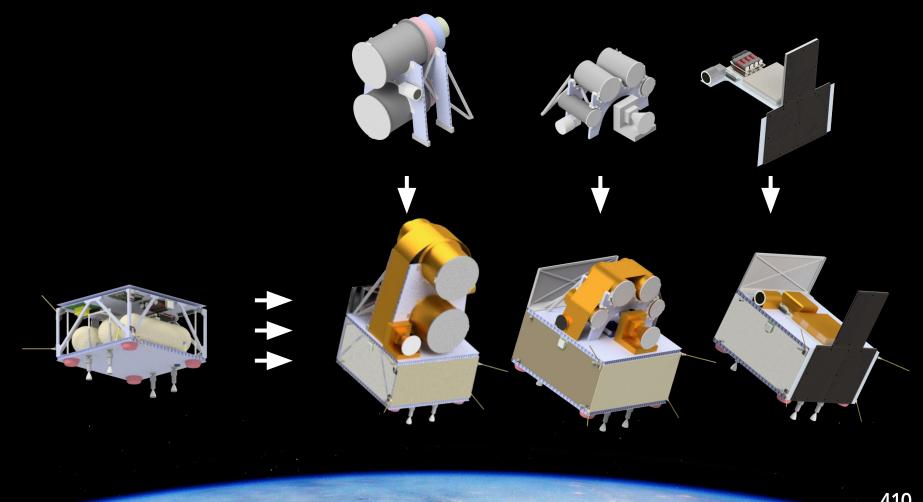
Common Bus

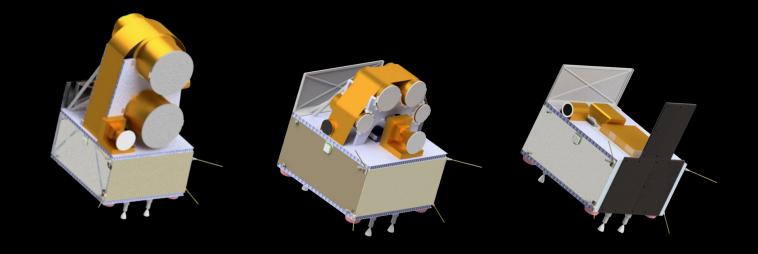

Common Bus

Test	System	Nth Satellite
Mechanical Function	Propulsion, ADC	5th
Power Leads	Propulsion, Avionics	5th
rower Leads	IMU, Star Tracker, GPS	10th
Antenna Terminals	Comms Assembly	5th
E-Fields	Avionics, ADC	5th
Power Line	Battery	10th
Leak	Propulsion, ADC	5th

Test Levels per GEVS-SE Rev A




Comms Payload


All Satellites

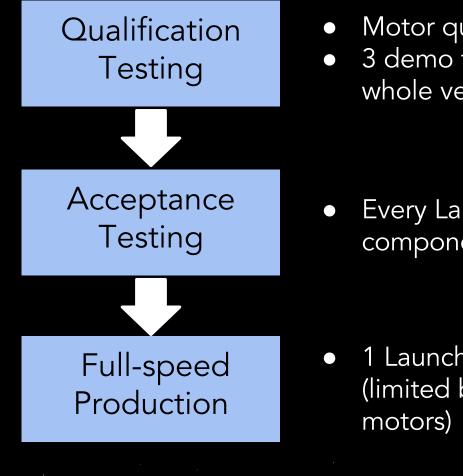
• Solar Panels and MLI are added after Bus-Payload mating is complete

Test	System	Nth Satellite
Mechanical Function	Vis/NIR, TIR, Comms Payload	Every
Power Leads	Vis/NIR, TIR, Comms Payload	5th
Antenna Terminals	Comms Payload	Every
Payload Transmitters	Comms Payload	Every

Full Satellite (5th)

Modal Survey, Static Loads, Acceleration, Acoustics, Pressure Profile, Mass Properties, Magnetic Properties

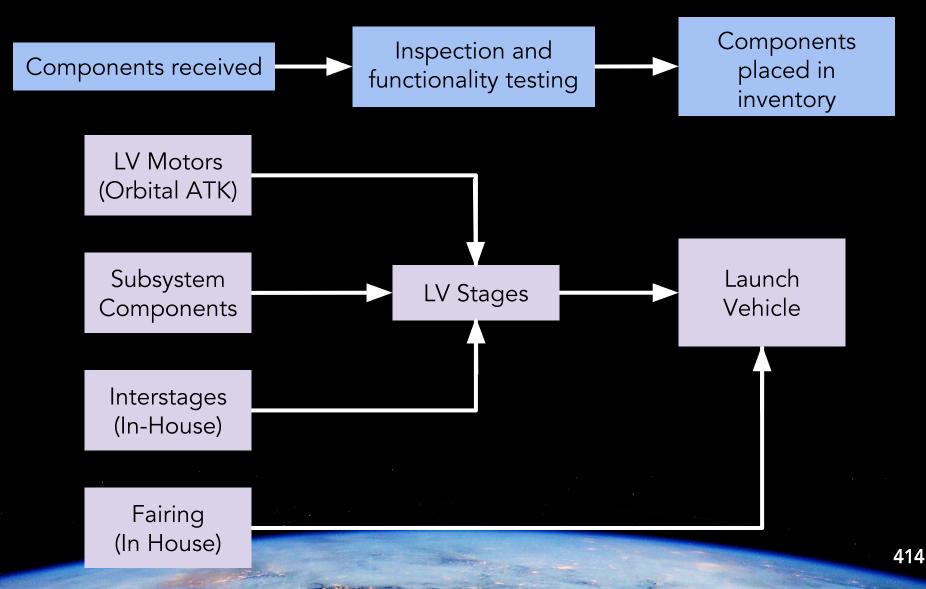
Test Levels per GEVS-SE Rev A



MISSION LIFECYCLE LAUNCH VEHICLE AI&T

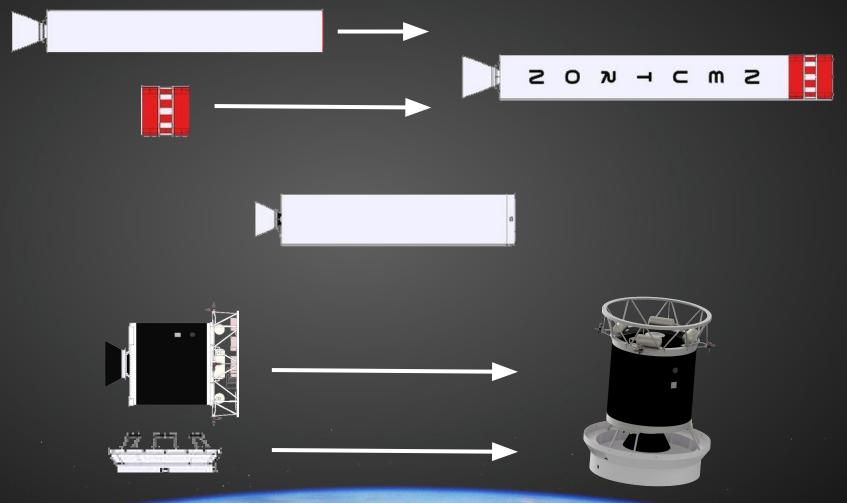
JERALYN GIBBS

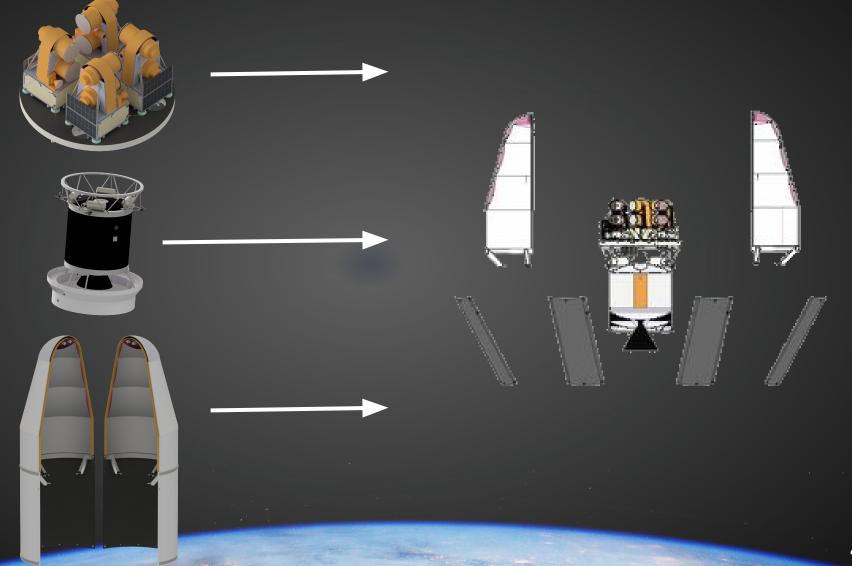
Launch Vehicle Al&T

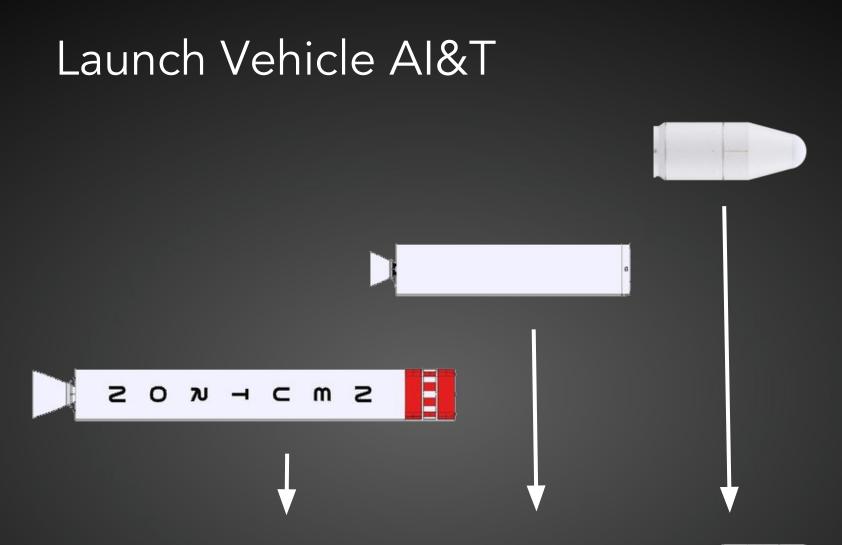

- Motor qual through Orbital ATK
- 3 demo flight tests to qualify whole vehicle

 Every Launch Vehicle at component level

1 Launch Vehicle per month (limited by production of solid motors)


Launch Vehicle AI&T


Launch Vehicle AI&T



Launch Vehicle AI&T

v - c m z

MISSION LIFECYCLE RELIABILITY

MAZZIN AJAMIA

Redundant Systems

- 1 comms sat per plane
- 2 Vis/NIR sats in full picture set
- 6 Launch Vehicles
 - 3 Vis/NIR
 - o 2 Comms
 - o 1 TIR

Satellites

- Assumptions:
 - We are flagship organization
 - MINERVA satellites resemble CubeSats
 - Base satellite reliability on CubeSat history
 - Likelihood of failure independent of satellite function
 - Partial failures considered full failure
 - System Weight:
 - $\blacksquare Imaging = 60\%$
 - Comms = 40%

Satellites

- Results:
 - 89% Satellite Reliability
 - 5 satellites Dead on Arrival (DOA)
 - Up to 3 satellites dead before 6 months
 - Likely power and communication hardware failure

Satellites

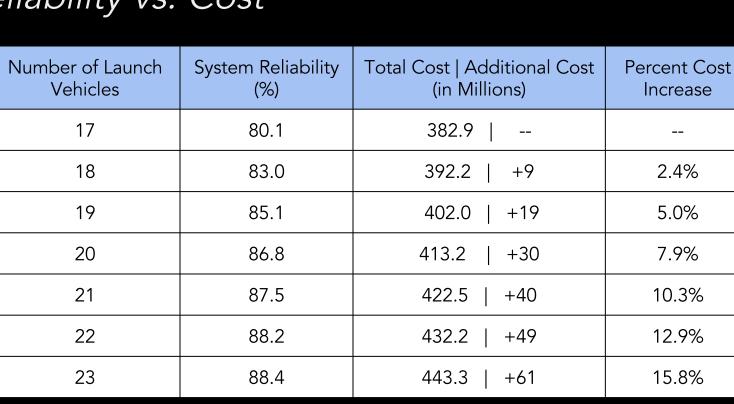
• Most likely DOA scenarios:

Case	Comms	Vis/NIR	TIR	Avg. Capability (%)
1	1	4	0	97.3
2	2	3	0	98.7
3	3	2	0	99.8
4	2	2	1	97.8
5	1	3	1	96.4

Satellites

- Remedial Solutions
- Comms
 - Shift satellites in true anomaly
- Imaging
 - Allocate satellites to get full picture
 - Sacrifice image overlap or quality
- All
 - Redundant Launches

Launch Vehicle


- Assumptions
 - Estimated reliability starts at 75%
 - \circ 85% Reliable after 3 test launches
 - 85% results in 2 expected failures
- 6 Additional LVs
 - Accounts for possible failure distribution
 - 90% chance that all satellites will be launched successfully

All Vehicles

- Launch : 90% reliability
- Satellites : 89% reliability
- Total system reliability : 80%
- Total system reliability can be increased by increasing the number of launch vehicles, for a cost.

Reliability vs. Cost

Example : Having two extra launch vehicles, an estimated increase of cost of 5%, increases system reliability by 5%.

After 5 years

- If no command is given in 5 years, will perform maintenance to ensure system reliability
- Unused redundant vehicles can be used in next set

Additional Sets

- The customer has expressed intent to purchase multiple sets of this system to respond to multiple future disasters
- Option 1: 30 year contract to manufacture a new set every 3 years for a total of 10 sets
- Option 2: Made to order sets
- Time between set deployments: 6-18months
 - Dependent duration of storage before first command given
- Opportunity for changes in between sets
 o Increases reliability

MISSION LIFECYCLE

NIK POWELL

429

Cost

Methodology

- Aggregate Parametric Cost Model
 - Subsystem Masses, Mission Factors, Learning Curve Exponent, Accounting for Inflation
- Bottom-up cost estimation
 - Combined component and personnel cost projection

Cost

Development and Test

- Development of payload and subsystems
- Test costs including 3 of each satellite units, and 3 launch vehicles

	LV	Comms	Vis/NIR	TIR
Development &	\$173 M	\$4.2 M	\$8.1 M	\$6.4 M
Test		Common Satellite Bus: \$7.7 M		

Price Breakdown by Subsystem/Unit

	Comms	Vis/NIR	TIR	LV
Flight System	\$9.2 M	\$19.2 M	\$4.5 M	\$73.5 M
Redundant Units	\$5.3 M	\$7 M	\$3.1 M	\$28 M
Nominal Vehicle Cost	\$0.6 M	\$0.8 M	\$0.9 M	\$5.9 M

Cost

Ground Costs

- Assuming an operation span of 5 years
- Accounting for 5 Ground-stations & 5 Launch Facilities

	Non-recurring	Recurring (Yearly)
Launch Facilities	\$16.8 M	\$3.5 M
Ground-stations	\$1.5 M	\$0.25 M

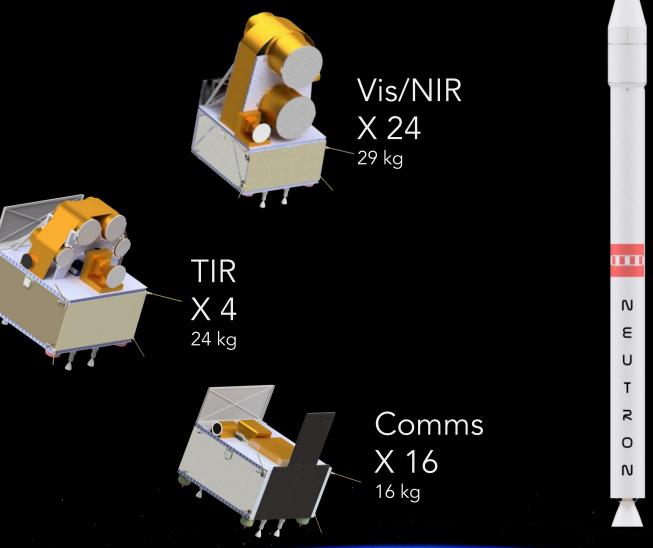
Cost

Summary

	# Units	Total
Comms	27	\$20.2 M
Vis/NIR	39	\$36.5 M
TIR	11	\$15.9 M
Common Satellite Bus		\$7.7 M
LV	20	\$274.4 M
Launch Facilities	5	\$34.3 M
Ground-stations	5	\$2.8 M
Overall Total		\$391.8 M

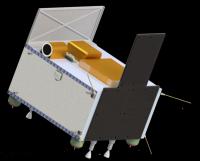
Cost

Recurring System Sets


- Initial Complete Flight System Set Cost: \$106.3 M
- Initial TIR Flight System Set Cost: \$4.5 M

Complete Set	Total	TIR Set	Total
Second	\$82.2 M	Second	\$3.02 M
Third	\$77 M	Third	\$2.89 M
Fourth	\$73.2 M	Fourth	\$2.78 M
Fifth	\$70.3 M	Fifth	\$2.69 M

System Summary


LV X 11 ^{25 tonnes}

System Summary

Vis/NIR X 24 + 12 ^{29 kg}

TIR X 4 + 4 ^{24 kg}

Comms X 16 + 8 ^{16 kg} LV X 11 + 6 ^{25 tonnes}

N

F

U

т

R O

N

Mission Requirements Summary

- 25% capability in 12 hours
- Full capability in 24 hours
- 1 daylight image of full AOI daily
- 3 daylight images of 15% of AOI daily
- Repeater access for 240 minutes daily
- System storable for minimum of 5 years
- 95% reliable after 6 months (at EOL)

THANK YOU

Acknowledgments

A huge thanks to Mr. Joe Carpico and Dr. Jordi Puig-Suari.

We would also like to thank Space Systems Loral, Lockheed Martin Space Systems, Northrop Grumman Space, and The Boeing Company for hosting us throughout the year.

SLIDE REPOSITORY

MISSION

Orbit Altitude Trade Metrics

	Time to Orbit Radiation Dosage		Payload Requirements		Deorbit		Number of vehicles		SUMS		
WEIGHT		0.8	0.5		0.7		0.3		0.8		
LEO	4	Best option, but still takes time (~12 min)	4	Lowest available, but still some. Short mission, so no rad hard	4	Lowest available payload reqs. Need high field of view, but low power, low zoom, for IMG, low power, low gain, low freq for COM	4	Lowest available, but still reqs prop to do in <5 years. Ideal is natural deorbit	2	A lot required, but not infeasible	10.8
MEO	3	Slower than Leo, faster than GEO/GTO	1	Lots (Van Allens)	2	Medium. Need zoom, high power, med gain, but low badwidth/field of view	2	Better than GEO, but way worse than LEO. High DV reqd	3	Less than Leo, but still probably more than 1	7.3
GEO	1	Slowest option. Unreasonable (approx 4 hours, and slow phasing time)	1	High	1	Highest for comm, high gain, high power. Img needs zoom, but low field of view. Hardest for pixels, hight power, thermal more or less impossible	1	Unreasonable DV, need to go to graveyard (customer not okay with)	4	Theoretically could be 1 for image, 2 for Comm if tailored orbit	5.5

Capability Allocation Trade Metrics

	Satellite Complexity		Optimal Orbit Feasibility		Number of Vehicles		Unit Cost		Dev Cost		SUMS
WEIGHT		0.8		0.8		0.7		0.5		0.6	
Separate Imaging Satellites	4	SEPS are much simpler than a big multi purpose satellite, but not cubesats perse	5	Comm and Img can go where they are the most effective	2	A lot, but optimal config	4	Smaller, inexpensive with COTS parts	2	Two seperate dev costs	11.8
Same Imaging Satellite	2	Pretty complicated, multiple payload systems and orbit reqs	2	Need cross coverage, adding sats and meaning sats have downtime. effectively impossible to have 1 sat hit the same target nadir more than once per day	2	Seemingly less, but need more that waste passes to meet comm reqs and gap times	2	Larger, probably fairly complex with redundancy	3	1 dev cost, and probably a large one	7.4

Orbit Variability Trade Metrics

	Number of Vehicles Number of Orbital Planes		Launch Site Location		Wasted Coverage		System Complexity		Launch Vehicle Requirements		SUMS		
WEIGHT		0.9		0.8	0.7		0.6		0.5		0.6		
Variable Orbits	4	Requires Less vehicles, as the orbits are optimized	3	Many, and different	3	Requires many, probably around the world	4	Lowest feasible wasted coverage, designed to target area	2	Many Sats, Many Planes, Many Schemes	2	Different, need to accommodate a large range of launches	12.7
Complete Global Coverage	2	A lot required, very non optimal	3	Many, the same	3	roughly the same	2	Covers entire globe, most coverage is wasted	3	1 scheme, but very detailed and need maint	4	Same launch every time, optimized	11.0

Distribution Scheme Trade Metrics

	Time		DeltaV Required		Number of Maneuvers		Launch Vehicle Complexity		Satellite Complexity		SUMS
WEIGHT		0.8		0.8		0.6		0.7		0.5	
Launch Vehicle Distribution	2	Has to do each individually. Time consuming series deployment. Hard to make constant across all scenarios	1	More DV required per LV, so more overall (LV carries enough for multiple sats)	2	Lots by one Vehicle	2	High, Multi restart, requires Mono or LBP, high accuracy injection	4	Medium, needs all the same systems for stationkeeping, deorbit	7
Satellite Distribution	4	Each Sat does it's own, can start once it is in the right orbital plane	3	Sat carries it's own, so pretty low (think staged rockets)	4	2 By each Vehicle, max	4	Low, can do with all solids and minimal GN&C	2	Medium, needs all the same systems for stationkeeping, deorbit (more propulsion)	11.8

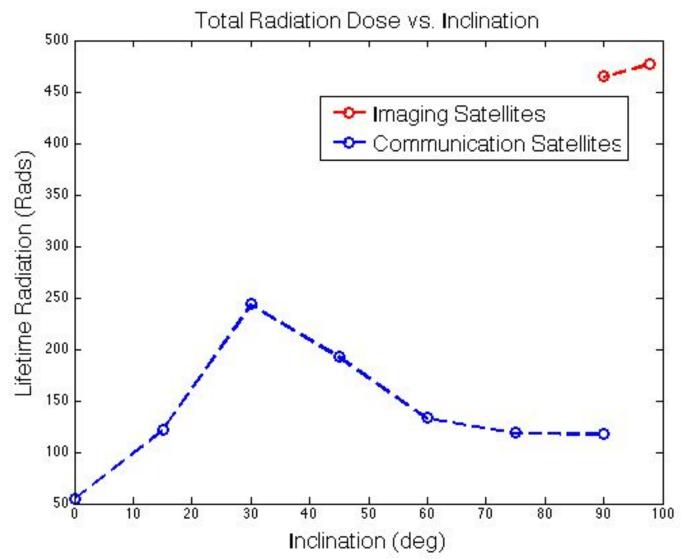
Imaging Spectral Band Allocation

	The	rmal Imaging Decision	N	umber of Launches		Excess Coverage	S	SUMS	
WEIGHT	0.8		0.5		0.5				
Separate Satellites	4	If no thermal is wanted, no thermal is launched. However, it is still built and staged	2	More launches if thermal is wanted	4	Can be tailored to cover exactly what the customer wants (or doesnt want)	4	Each sat has only a single payload	9
Same Satellite	1	May launch thermal satellites without needing to	3	Same amount either way	2	Will be covering the same as VIS/Nir every day with no deviaiton	1	Sats have 2 payloads, and very different reqs and sizes	4

Common Bus Trade

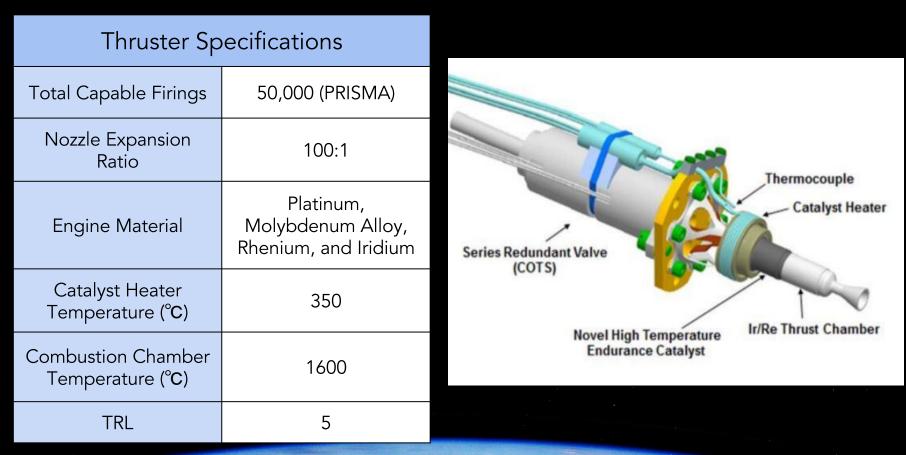
	I	Development Cost	Ор	erational Differences	Βι	SUMS	
WEIGHT		0.8		0.7			
Common Bus	4	Payload Dev Cycles and a Single Bus Dev Cycle	4	Common operations with the exception of payload	2	Some excess capability to deal with drivers on different payloads	7.2
Dedicated Bus	1	6 Dev Cycles	2	Totally different spacecraft ops	5	None	5.2

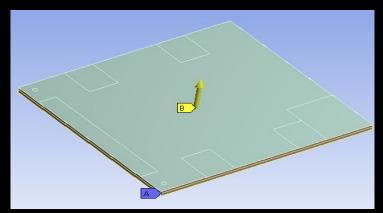
Back to Trade

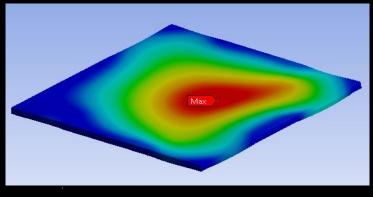

ARCHITECTURE

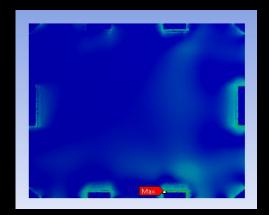
COMMON BUS

Radiation



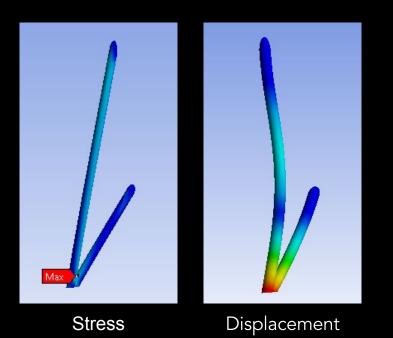

Propulsion


Four 5 N High Performance Green Propellant Thruster



Boundary Conditions

Displacement

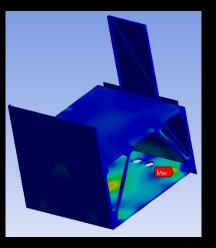


Stress

Face-sheet	Graphite 230 GPa
Core	3/8 – 5052 – 2.3
Mass (kg)	0.108
Max Stress (MPa)	223.9
Max Displacement (mm)	0.58
Factor of Safety	2.3

Payload Struts:

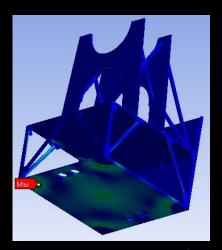
Material	Graphite 395 GPa
Mass (g)	36.6
Max Stress (MPa)	365.2
Max Displacement (mm)	1.2
Factor of Safety	2.3


Common Bus

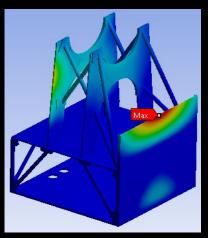
S - Z W R > A

Full satellite analysis:

Communication Satellite							
Max Stress (MPa)	53.2						
Max Displacement (mm)	1.3						



Stress



Displacement

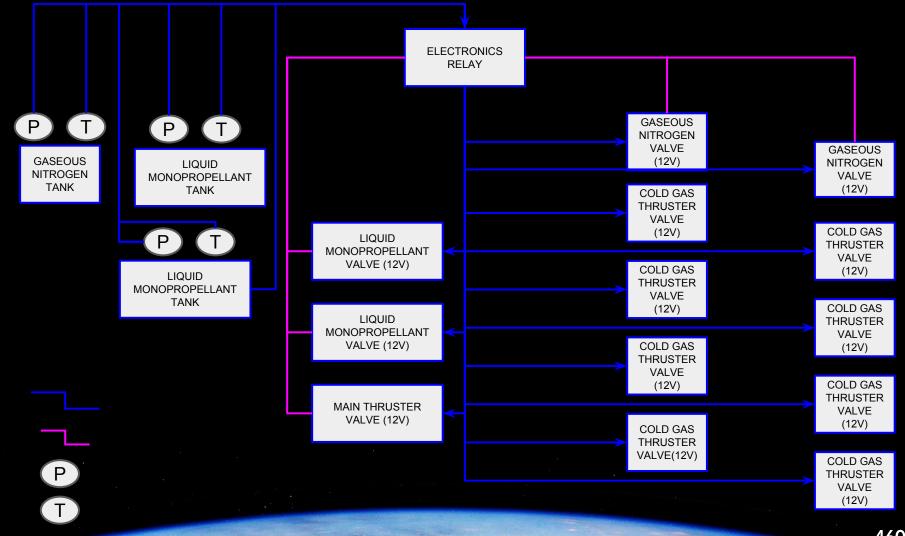
Imaging Satellite					
Max Stress (MPa)	104.8				
Max Displacement (mm)	1.1				

Stress

Displacement

Comms Natural Frequency:

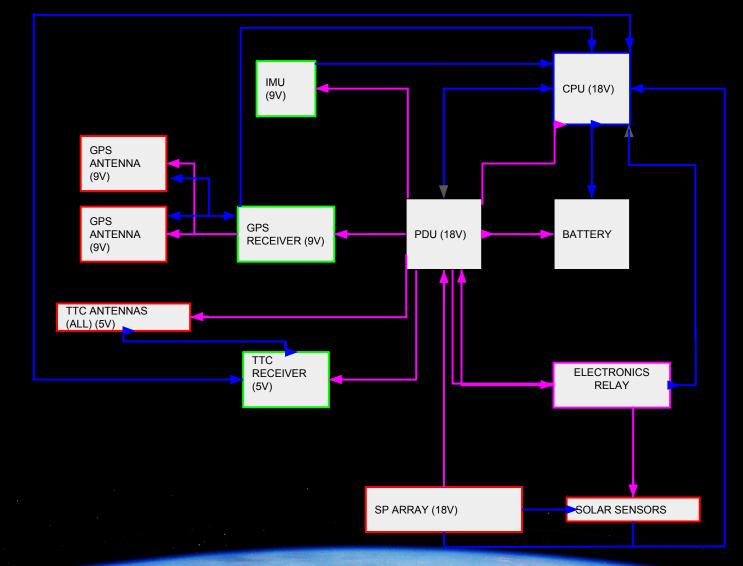
Propulsion

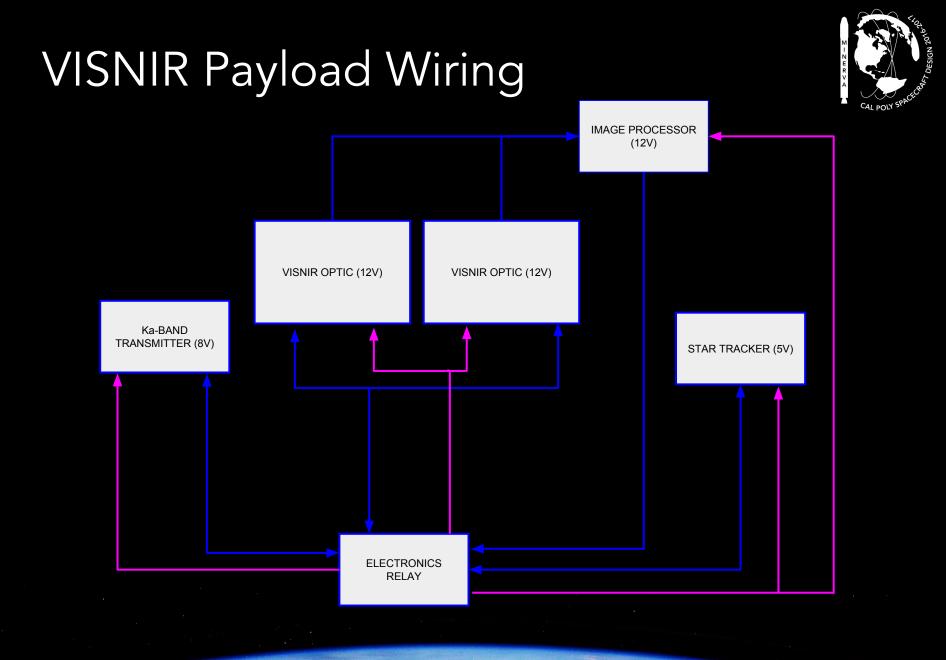


Hydrazine vs. Green Propellant Trade

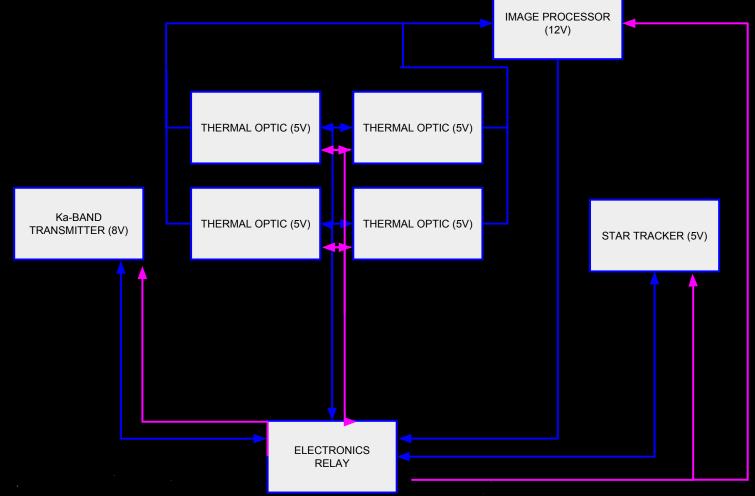
Propellant	Hydrazine	LMP-103s		
Stability	Unstable	Stable		
Toxicity	Highly Toxic	Low Toxicity		
Corrosive	Yes	No		
Carcinogenic	Yes	No		
Flammable Vapors	Yes	No		
Environmental Hazards	Yes	No		
SCAPE Required (Handling)	Yes	No		
Storable	Yes	Yes		
Shipping	Class 8/UN 2029	UN/ DOT 1.4S		

Propulsion Deck Wiring



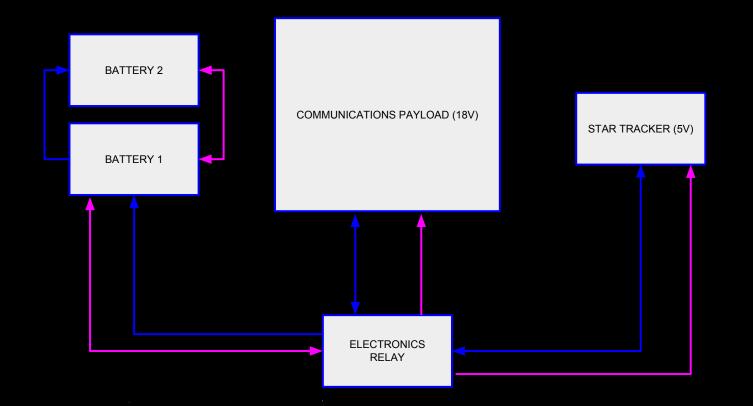

Return

Electronics Deck Wiring



Return

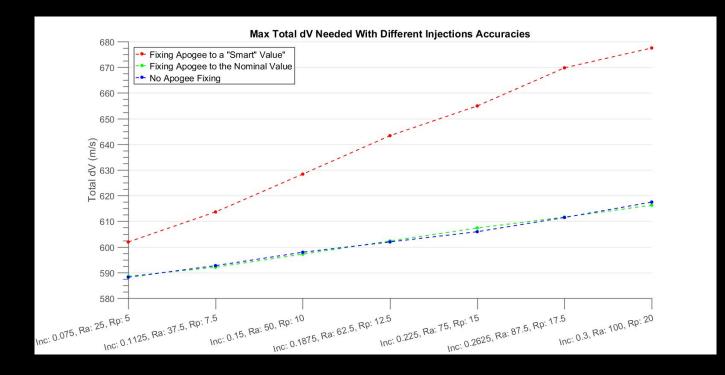
TIR Payload Wiring



Return

Comms Payload Wiring

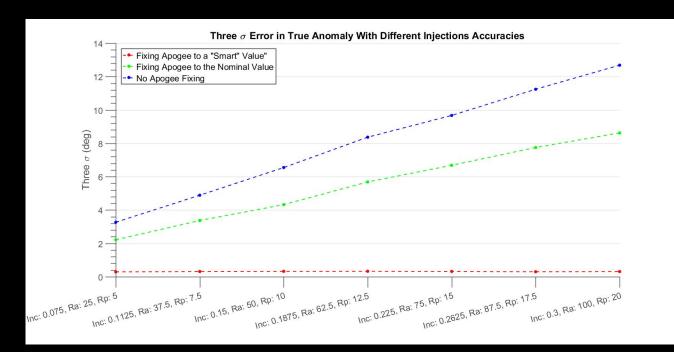
Return



IMAGING

Imaging - Orbit Corrections

Orbit Injection



- Fixing apogee to correct for timing discrepancies proved to be too costly in dV
- Fixing apogee to nominal value is on the same order of magnitude as not correcting

Imaging - Orbit Corrections

Orbit Injection

 When analyzing the case in which apogee is corrected to the nominal value, our LV may have injection inaccuracy 1.5 times that of Taurus to still allow for a 95% capable system

Imaging Sensor Type Trade Link Back to: Imaging Trades Slide

	VISNIR				TIR			
Metrics	Weight	Pushbroom	Pushwhisk	Matrix Starer	Weight	Pushbroom	Pushwhisk	Matrix Starer
Dwell Time	0.4	7	6	8	0.5	7	6	10
Mechanical Complexity	0.6	7	5	4	0.7	6	4	3
Pointing Requirements	0.3	7	8	5	0.5	6	9	8
Optical Complexity	0.5	5	6	5	0.4	4	6	4
Cost	0.4	3	4	3	0.4	4	5	3
Smear	0.3	5	4	3	0.6	4	3	5
Reliability	0.7	8	6	6	0.5	8	6	5
Power	0.3	9	8	7	0.3	8	7	6
Useful Data (%)	0.7	7	7	9	0.4	8	8	10
Operational Delay	0.4	8	6	8	0.4	5	4	6
Total		30.7	27.5	27.5		27.9	26.4	27.6

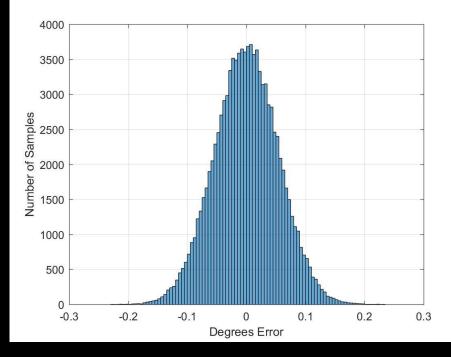
Imaging Sat Capability Trade

Metrics Considered:

- Data Generation
- Sensor Size
- Payload Size
- No. of Satellites
- Complexity
- Data Downlink
- Power Cost

- Pass Utilization
- Mass
- Size
- Power Requirement
- Control Capacity
- Phasing Time
- Phasing DeltaV

Link Back to: Imaging Trades Slide



Monte Carlo Pointing Simulation (Imaging)

Simulation Parameters:

- 100,000 random samples in normal distribution
 - 1-σ standard deviation equal to nominal pointing error (from budget)
 - \circ 1- σ error (MC): 0.0542°
- 3-*o* error: 0.251°
 - Requirement: 0.3°

Pointing Budget: Downlink Pointing Budget: Solar Generation Pointing Budget: Orbit Maintenance

Back to Pointing Budget

Pointing Budget: Imaging Downlink Window

	Source	*X-Axis [°]	Y-Axis [°]	Z-Axis [°]
Thermal	Thermal Error	7.4e-8	6.9e-8	2.3e-10
	Gyroscope Mounting Misalignment	0.0185	0.0175	-
	Gyroscope Sensor Misalignment	0.036	0.036	0.036
AD Sensors	Gyroscope Angular Random Walk	1.1e-3	1.1e-3	1.1e-3
	Gyroscope Bias Instability	2.78e-05	2.78e-05	2.78e-5
	Gyroscope Scale Factor Error	1.5e-3	0.0878	0
Actuator	RCS Thruster Misalignment	0.005	0.005	0.005
Totala	Requirement	10	10	10
Totals	RSS Total 1- σ (w/ 20% contingency)	0.087	0.136	0.0844

* X-axis through optics

** Star Tracker not used during this phase due to high angular rates. Errors from GPS position/clock are negligible.

Pointing Budget: Imaging Sun Gathering Orbit

	Source	*X-Axis [°]	Y-Axis [°]	Z-Axis [°]
Thermal	Thermal Error	7.4e-8	6.9e-8	2.3e-10
	Gyroscope Mounting Misalignment	0.0185	0.0175	-
AD Sensors	Gyroscope Sensor Misalignment	0.036	0.036	0.036
AD Sensors	Gyroscope Angular Random Walk	1.1e-3	1.1e-3	1.1e-3
	Gyroscope Bias Instability	2.78e-05	2.78e-05	2.78e-5
Actuator	Effective RCS Error	0.005	0.005	0.005
T . 1	Requirement	60	10	10
Totals	RSS Total 1- σ (w/ 20% contingency)	0.299	0.299	0.299

* X-axis through optics

** Star Tracker turned off during eclipse for power consumption, given requirements are lax. Errors from gyroscope scale factor, and GPS position/clock are negligible in this phase.

Pointing Budget: Imaging Orbit Maintenance Orbit

	Source	*X-Axis [°]	Y-Axis [°]	Z-Axis [°]
Thermal	Thermal Error	7.4e-8	6.9e-8	2.3e-10
	Star Tracker Accuracy	1.6	2.7e-3	2.30e-4
	Star Tracker Mounting Misalignment	0.0185	0.0175	0.008
AD Sensors	Gyroscope Mounting Misalignment	0.0185	0.0175	-
	Gyroscope Sensor Misalignment	0.036	0.036	0.036
	Gyroscope Angular Random Walk	1.1e-3	1.1e-3	1.1e-3
	Gyroscope Bias Instability	2.78e-05	2.78e-05	2.78e-5
Actuator	Effective RCS Error	0.005	0.005	0.005
Tatala	Requirement	1	1	1
Totals * X-axis throug	RSS Total 1- σ (w/ 20% contingency)	0.0541	0.0547	0.0449

** Errors from gyroscope scale factor, and GPS position/clock are negligible in this phase.

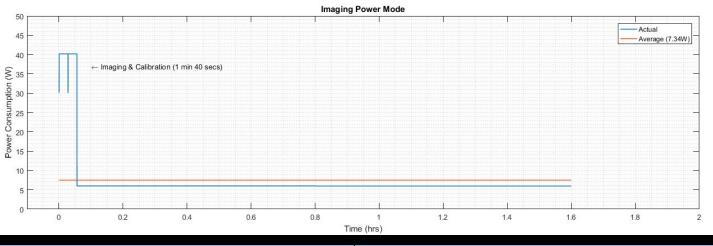
Imaging Comms Downlink

Link Budget
Downlink of Images

Frequency	28.6 GHz (Ka)
Noise Temp	285 K
Space Loss	180 dB
Data Rate	116 Mbps
Transmitter Gain	23.5 dB
Receiver Gain	61 dB
Power (RF)	0.63 W
Power Consumption (Total)	15 W
Margin	12 dB

Back to presentation

IG Comm


Solar Tracking (5 ms pulses)

Sun Tracking 40 Actual 35 Average (7.34W) Attitude Maintenance (every 12 mins) Power Consumption (W) 10 5 0 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 Time (hrs)

Subavatara	Usage		
Subsystem	Peak (W)	Average (W)	
ADCS	24	24	
CD&H	6	6	
Total	30	30	

Imaging

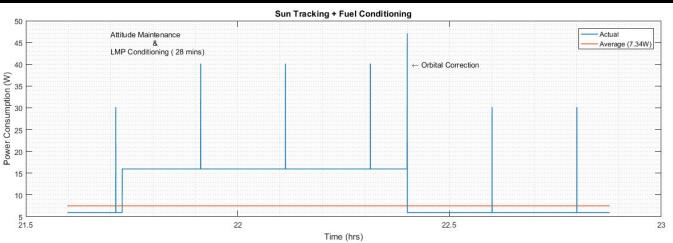


Subavatara	Usage		
Subsystem	Pulse (W)	Average (W)	
Payload	28	28	
ADCS	24	6	
CD&H	6	6	
Total	58	40	

Downlinking and TT&C

Subaystam	Usage		
Subsystem	Pulse (W)	Average (W)	
COMM	25	25	
ADCS	24	4	
CD&H	6	6	
Total	55	35	

Idle (Similar to Image Compression)


 Sensors spend time in low power mode while recharging batteries due to pointing requirements.

Subartom	Usage		
Subsystem	Peak (W)	Average (W)	
ADCS	4	<1	
CD&H	6	6	
Total	10	6	

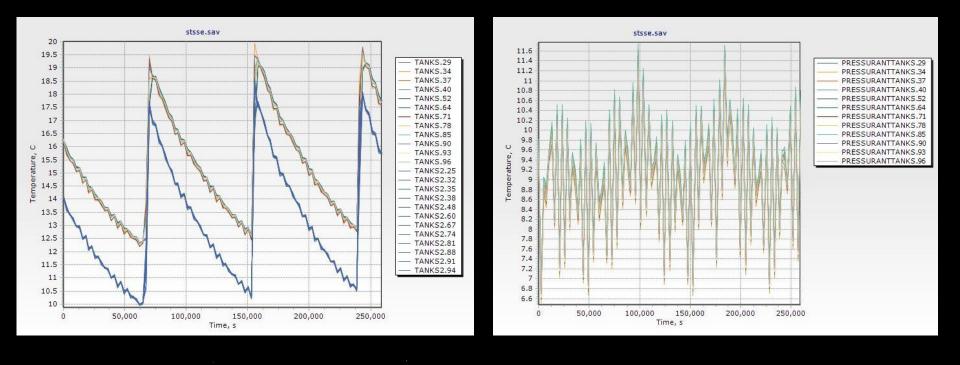
Propellant Conditioning

	Usage				
Subsystem	With Solar Tracking		While Idling		
	Peak (W)	Average (W)	Peak (W)	Average (W)	
Thermal	10	10	10	10	
ADCS	24	24	4	<1	
CD&H	6	6	6	6	
Total	40	40	20	16	

Orbit Correction

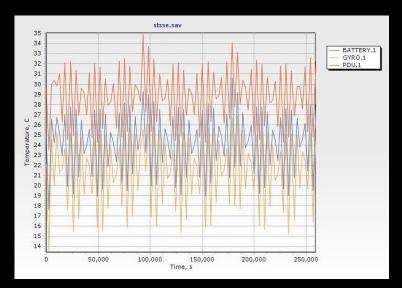
Sun Tracking + Fuel Conditioning 50 Attitude Maintenance & Actual 45 Average (7.34W) LMP Conditioning (28 mins) ← Orbital Correction 40 Power Consumption (W) 15 10 5 22 23 21.5 22.5

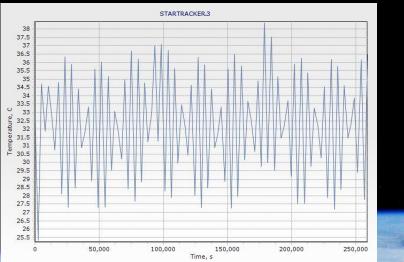
Time ((hrs)	

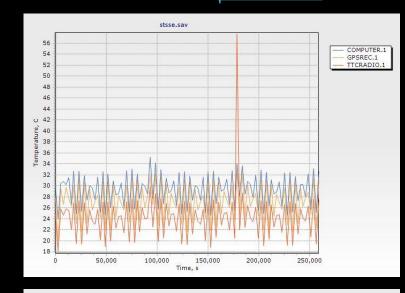

Subayatara	Usage		
Subsystem	Peak (W)	Average (W)	
Propulsion	32	32	
ADCS	4	4	
CD&H	6	6	
Total	42	42	

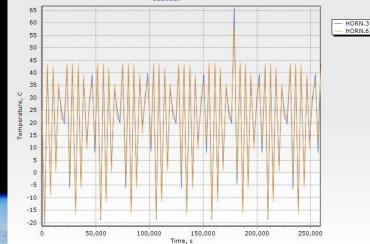
CE Secold And

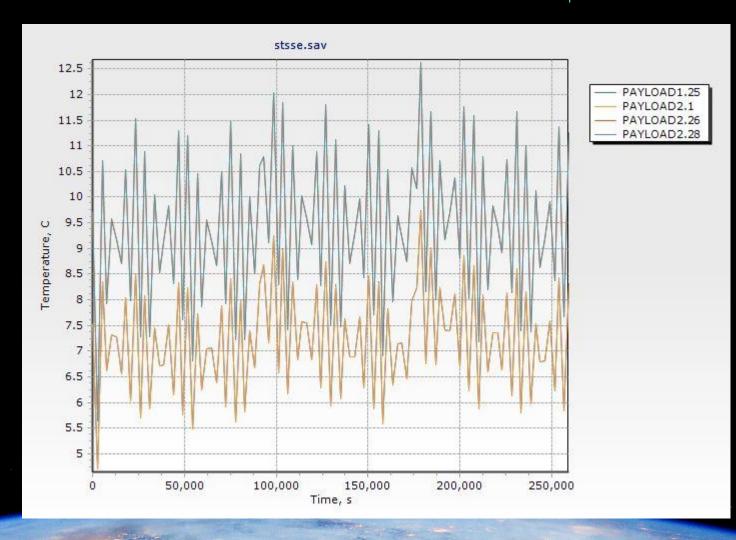
Treine There


VIS/NIR Imaging - Thermal Sun Synch Orbit - Transient - Tanks

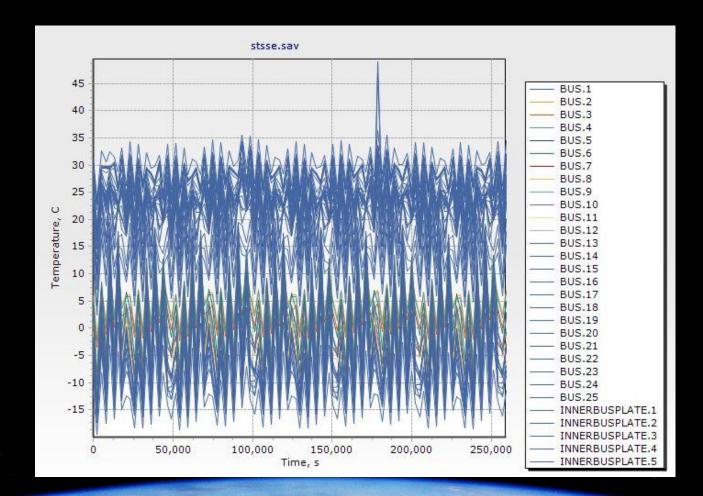




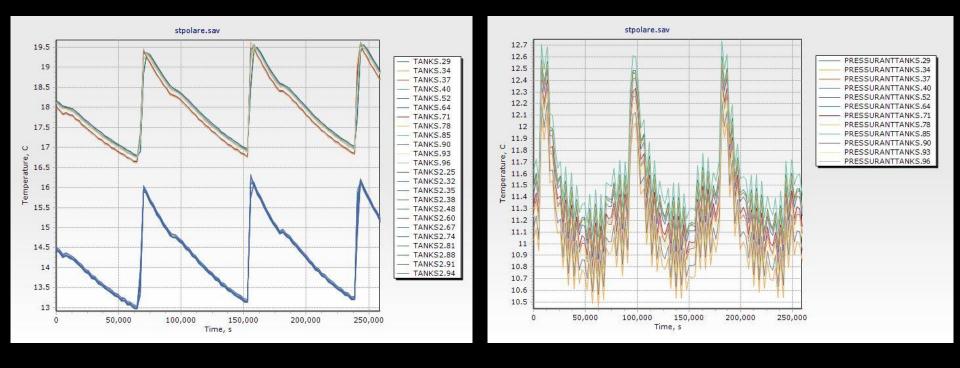

VIS/NIR Imaging - Thermal Sun Synch Orbit - Transient - Electronics


stsse.sav

VIS/NIR Imaging - Thermal Sun Synch Orbit - Transient - Payload


<u>Back to</u> presentation

VIS/NIR Imaging - Thermal Sun Synch Orbit - Transient - Bus



<u>Back to</u> presentation



VIS/NIR Imaging - Thermal Polar Orbit - Transient - Tanks

VIS/NIR Imaging - Thermal Polar Orbit - Transient - Electronics

53

52

51

50

49

48 47

46

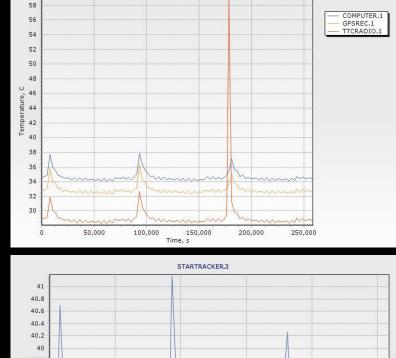
45

44

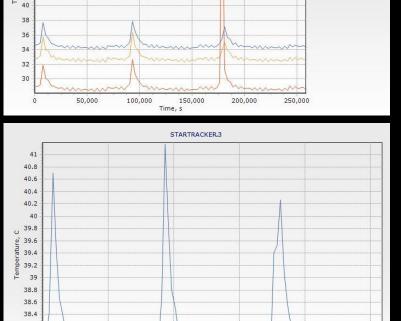
43

0

50,000


100,000

150,000


Time, s

200,000

250,000

stpolare.sav

100,000

50,000

150,000

Time, s

38.2

37.8

37.6

0

38

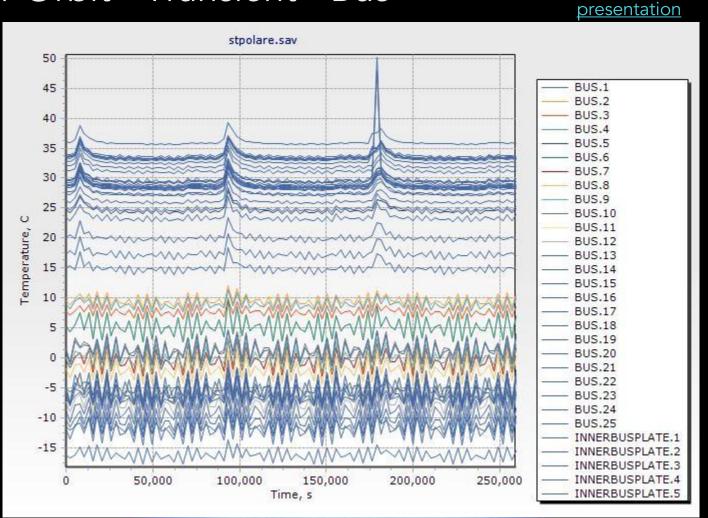
Back to presentation

486

250,000

200,000

VIS/NIR Imaging - Thermal Polar Orbit - Transient - Payload

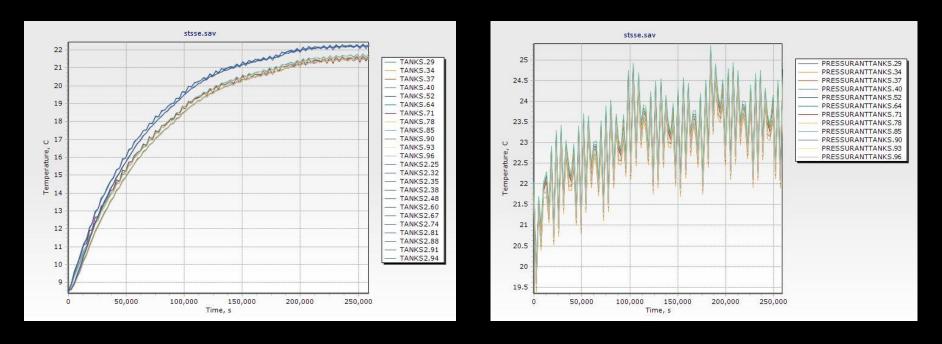

Back to

presentation

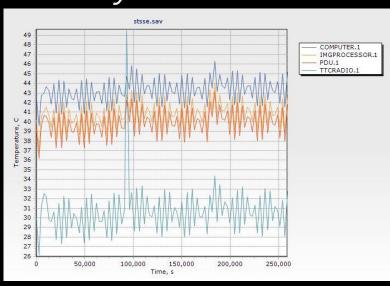
stpolare.sav 29.5 PAYLOAD1.25 PAYLOAD2.1 29 PAYLOAD2.26 PAYLOAD2.28 28.5 28 27.5 U Temperature, 27 26.5 26 25.5 25 24.5 24 0 50,000 100,000 150,000 200,000 250,000

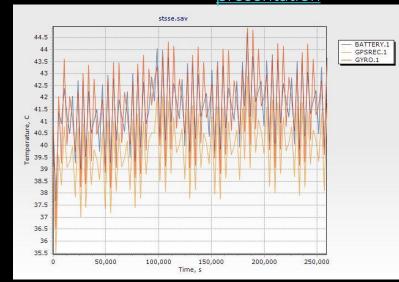
Time, s

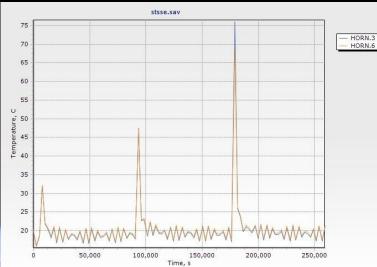
VIS/NIR Imaging - Thermal Polar Orbit - Transient - Bus



Back to

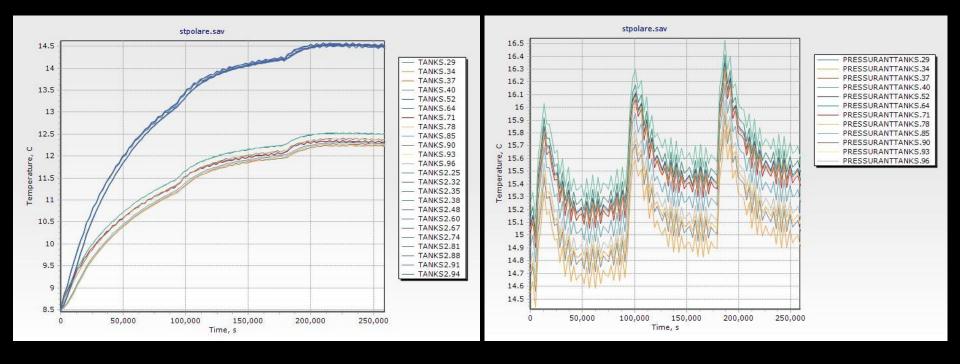

TIR Imaging - Thermal Sun Synch Orbit - Transient - Tanks




<u>Back to</u> presentation

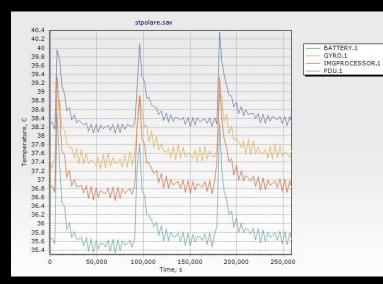
TIR Imaging - Thermal Sun Synch Orbit - Transient - Electronics

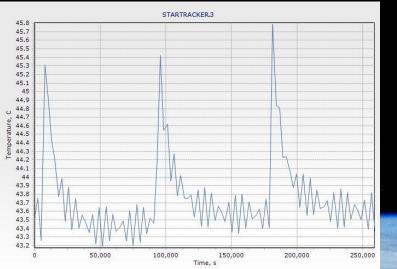
TIR Imaging - Thermal Sun Synch Orbit - Transient - Payload



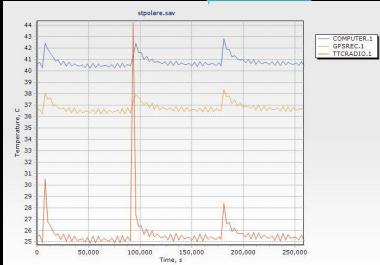
Back to

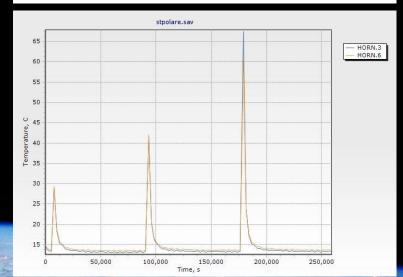
TIR Imaging - Thermal Polar Orbit - Transient - Tanks

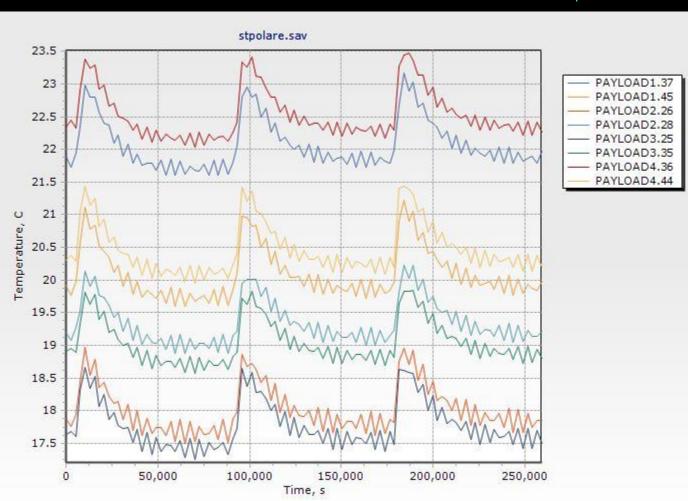

Back to presentation



492

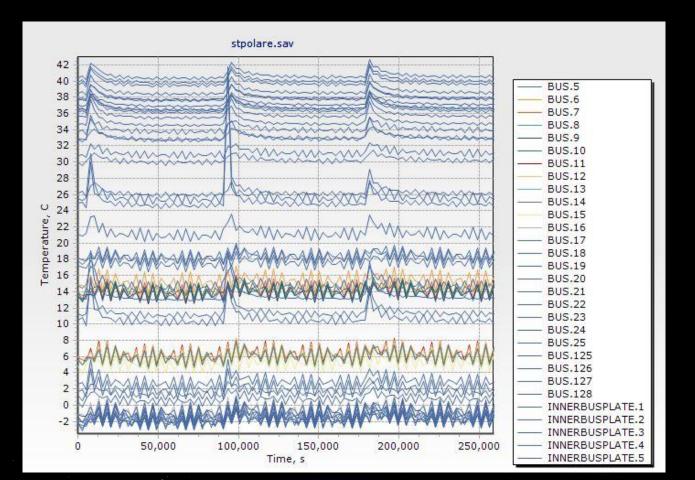

TIR Imaging - Thermal Polar Orbit - Transient - Electronics





W. C. M.

TIR Imaging - ThermalPolar Orbit - Transient - PayloadBack to
presentation



TIR Imaging - Thermal Polar Orbit - Transient - Bus

Back to

presentation

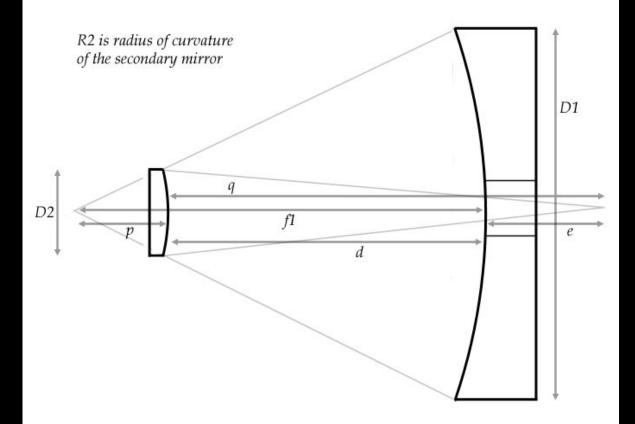
Imaging - Thermal

VIS/NIR Imaging Sat Operating Temps Back to presentation

	0 value if unknown		
Satellites	Component (Link)	Thermal Op. Range	
	Component (Link)		
(Kelvin (K) 233-353		
ADCS	Star Tracker	233-353 233 to 358	
	Rate Gyro/Accelerometer	233 to 358	
	Position Sensor	233 to 358	
	Position Sensor Antenna		
	RCS Thruster	283 to 368	
Propulsion	Engine		
C	Piping/Valves	70 . 000	
Structure	Frame/Harnessing	78 to 336	
	Batteries	233 to 358	
Power	Solar Cells	173 to 398	
	Wiring		
	PDU	253 to 333	
C&DH	Satellite Processor	248 to 333	
TT&C Comms	Antenna	233 to 353	
	Unique		
	Phasing Propellant	268 to 323	
	Deorbiting Propellant	268 to 323	
Propellant	Orbital Maintenance Propellant	268 to 323	
	Pressurant/ RCS Prop		
	LMP Fuel Tanks		
	Pressurant Tank	244 to 344	
	Heater		
Thermal	Cooling		
	MLI	133 to 473	
	Focal Plane Array	263 to 323	
Payload	Focal Plane Electronics		
	Optics + housing	263 to 323	
Downlink Comms	Antenna	233 to 353	
Downink Comms	Amplifier	233 to 358	
TT&C Comms	Radio	238 to 358	
C&DH	Imaging Processor	253 to 333	

496

Imaging - Thermal TIR Imaging Sat Operating Temps


Imaging - Vis/NIR Optics Details

Dimensions:

- d = 17.5 cm
- q = 24.5 cm
- D1 = 14.1 cm
- D2 = 5.5 cm
- f1 = 28.6 cm
- f2 = 20.1 cm
- R1 = 57.2 cm
- R2 = 40.2

Hole Diameter = 4.2cm

Imaging - Vis/NIR Sensor Details

Specs/Assumptions:

- 5 µm x 5µm pixel size
- 100% fill factor
- 1100 lines/s
- 816 Mbit/s data rate
- 0.62 µs pixel integration time
- 0.062 μs exposure time

Teledyne Piranha XL Color 8k

TIR Imaging Payload

Space Readiness Modifications

- Valve releases gas used during storage to keep lenses clean
- Lenses mounted on blades to dampen launch vibrations
- Passive thermal expansion prevention by varying lens material with ZnSe
- Front cover lens stops atomic oxygen and UV radiation
- Phosphorus coating on germanium lenses mitigates browning from radiation

COMMUNICATIONS

501

Orbits

Constellation Parameters

Altitude	Inclination	RAAN Spacing (Planes)	True Anomaly Spacing (Satellites)	Eccentricity
625 ± 7 km	Latitude ± 0.1°	Equal ± 6°	$40 \pm 6^{\circ}$	0 + 1e-3

Constellation Scheme vs Coverage Latitude

Latitude Bin	0°-10°	10°-25°, 65°-90°	25°-65°
No. of Satellites	16	12	16
No. of Planes	4	3	4

*0-16° covered by 16° inclination from St. Helena launch site

Monte Carlo Pointing Simulation (Communication Satellite)

Simulation Parameters:

- 100,000 random samples in normal distribution
 - 1-σ standard deviation equal to nominal pointing error (from budget)
 - \circ 1- σ error (MC): 0.742°
- 3-*\sigma* error: 3.164°
 - Requirement: 21.7°

Pointing Budget: TT&C Pointing Budget: Sun-Gathering

Back to Comms: Pointing Budget

Pointing Budget: Communications TT&C

	Source	*X-Axis [°]	Y-Axis [°]	Z-Axis [°]
Thermal	Thermal Deformation	7.4e-8	6.9e-8	2.3e-10
AD Sensors	Gyroscope Mounting Misalignment	0.0185	0.0175	-
	Gyroscope Sensor Misalignment	0.036	0.036	0.036
	Gyroscope Angular Random Walk	0.075	0.075	0.075
	Gyroscope Bias Instability	0.125	0.125	0.125
Actuator	Effective RCS Error	0.005	0.005	0.005
Totals -	Requirement	180	180	180
	RSS Total 1- o (w/ 20% contingency)	0.151	0.182	0.180

* X-Axis through patch antenna

** Star Tracker not use during operation due to low pointing requirements. Errors due to Gyro Scale Factor GPS position/clock negligible.

ADCS

Pointing Budget: Communications Sun Gathering

	Source	*X-Axis [°]	Y-Axis [°]	Z-Axis [°]
Thermal	Thermal Error	7.4e-8	6.9e-8	2.3e-10
	Gyroscope Mounting Misalignment		0.0175	-
AD Sensors	Gyroscope Sensor Misalignment	0.036	0.036	0.036
AD Sensors	Gyroscope Angular Random Walk	0.163	0.163	0.163
	Gyroscope Bias Instability	0.592	0.592	0.592
Actuator	Effective RCS Error	0.003	0.005	0.008
Totals	Requirement	60	10	10
	RSS Total 1- σ (w/ 20% contingency)	0.299	0.299	0.299

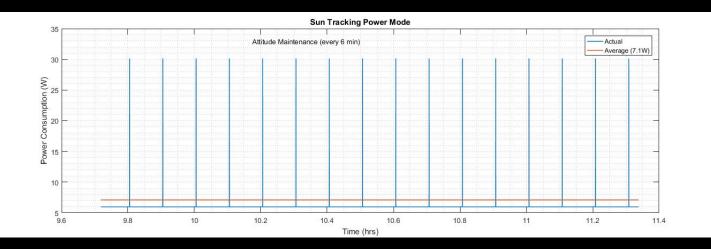
* X-Axis through patch antenna

** Star Tracker not used during eclipse. Errors due to Gyro Scale Factor GPS position/clock negligible during repeater operation

ADCS

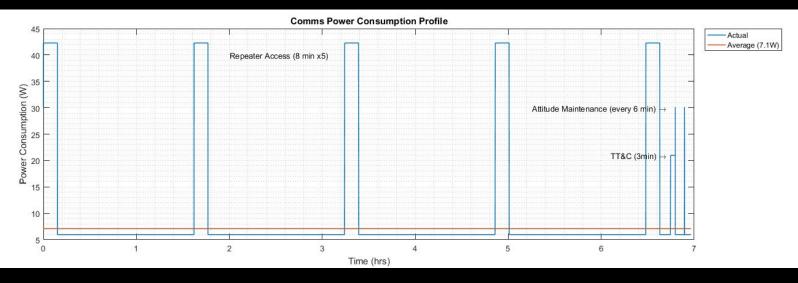
Mass Budget

- Thruster burn duration of 65 seconds per thruster over mission lifetime
- 13,000 firings per thruster over mission lifetime


Operation	Propellant Mass (g)		
Attitude Change	3		
Attitude Hold	15		
Disturbance Torques	15		
Detumble	1		
Grand Total	34		

Back to presentation

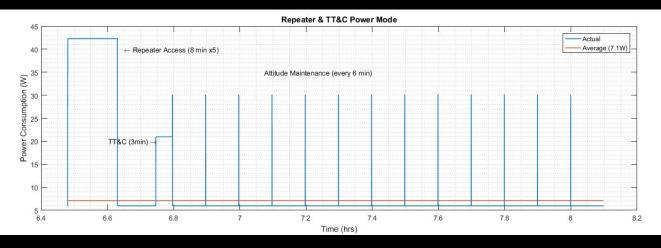
Solar Tracking

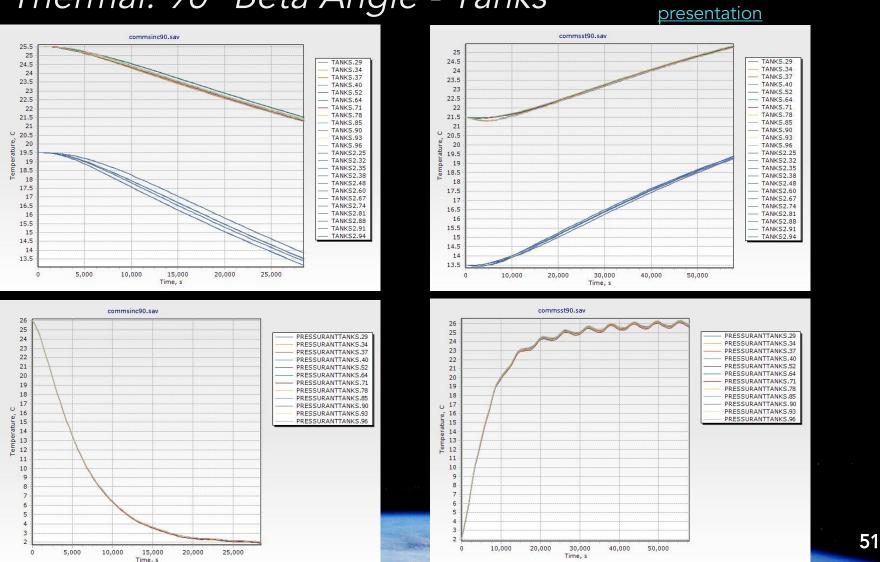


Subayatam	Usage		
Subsystem	Peak (W)	Average (W)	
ADCS	24	24	
CD&H	6	6	
Total	30	30	

Power Repeater Coverage

Back to presentation


Subaustan	Usage		
Subsystem	Peak (W)	Average (W)	
Payload	31	31	
ADCS	5	5	
CD&H	6	6	
Total	42	42	



<u>Back to presentation</u>

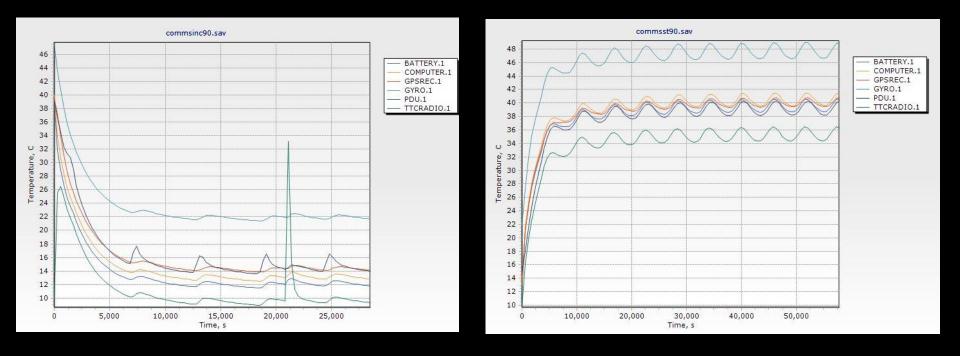
COMM SAT TT&C

Subayatana	Usage		
Subsystem	Peak (W)	Average (W)	
COMM	10	10	
ADCS	24	5	
CD&H	6	6	
Total	41	21	

Comms - Thermal

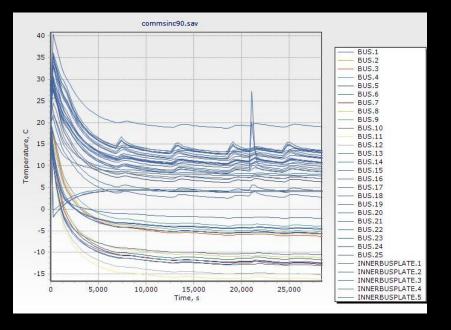
Thermal: 90° Beta Angle - Tanks

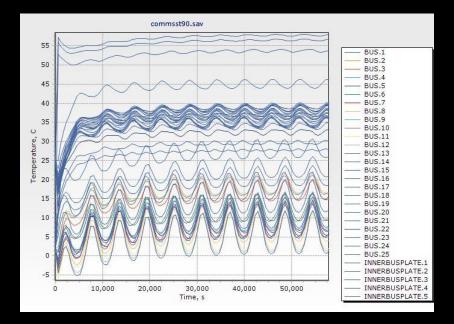
NE English and


- char the faith

Back to

Comms - Thermal Thermal: 90° Beta Angle - Electronics

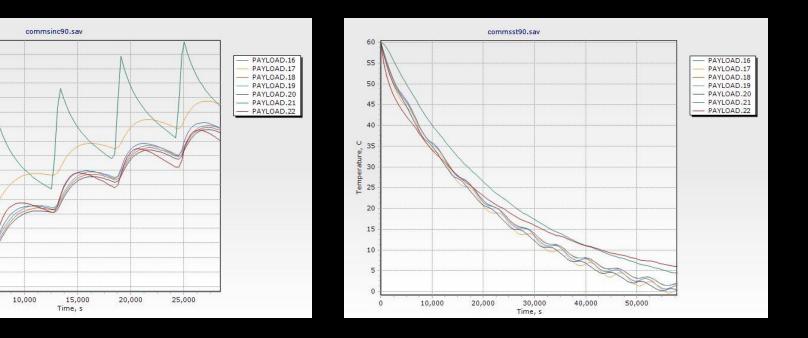




Comms - Thermal Thermal: 90° Beta Angle - Bus

Back to presentation

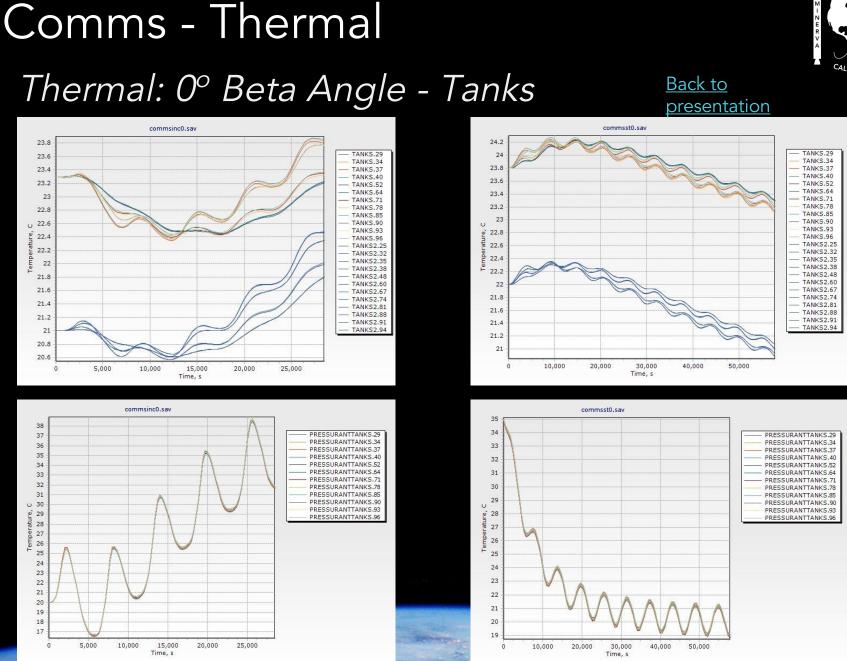
512

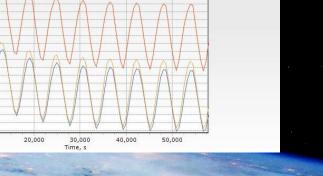

Comms - Thermal Thermal: 90° Beta Angle - Payload

U 45

-5

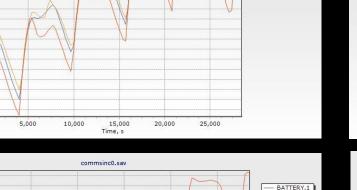
5,000


Temperature,


Back to

presentation

in the sec



BATTERY.1

GPSREC.1

GYRO.1

20,000

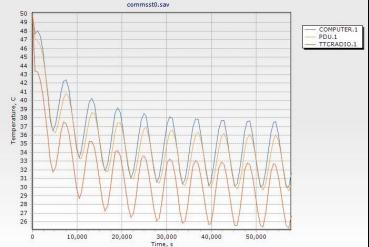
25,000

15,000

Time, s

10,000

Comms - Thermal *Thermal: 0° Beta Angle - Electronics*


commsinc0.sav PDU.1 TTCRADIO.1 U 38 erature, du 32

U 40

ature, 38

₽ 32

5,000

commsst0.sav

10,000

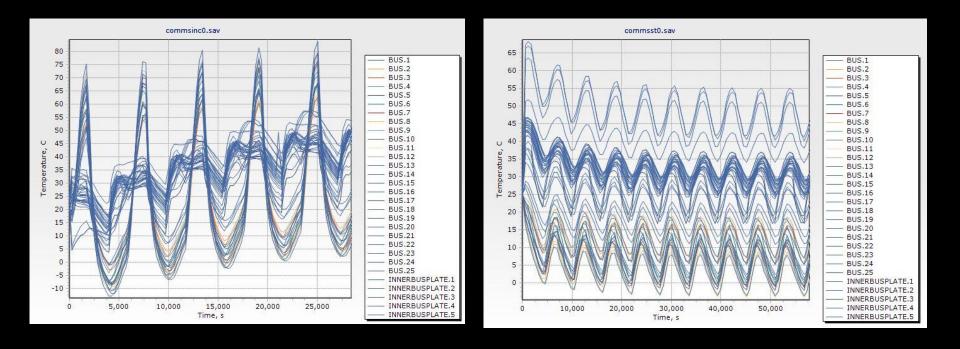
U 45

ature,

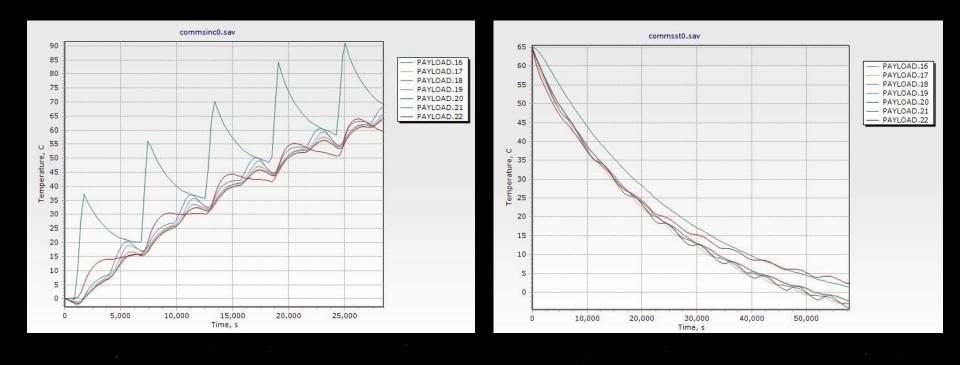
GPSREC.1 GYRO.1

and the second

<u>Back to</u>


presentation

Comms - Thermal Thermal: 0° Beta Angle - Bus


<u>Back to</u> presentation

Comms - Thermal Thermal: 0° Beta Angle - Payload

Back to presentation

517

Comms - Thermal

Communications Sat Operating Temps Back

15 541		
Satellites	0 value if unknown	
Subsystems	Component (Link)	Thermal Op. Range
Common		Kelvin (K)
	Star Tracker	233-353
	Rate Gyro/Accelerometer	233-353
ADCS	Position Sensor	233-358
	Position Sensor Antenna	
	RCS Thruster	283-368
Propulsion	Engine	
Propulsion	Piping/Valves	223 to 323
Structure	Frame/Harnessing	78 to 336
	Batteries	233 to 358
Power	Solar Cells	173 to 398
Fower	Wiring	
	PDU	253 to 333
C&DH	Satellite Processor	248 to 333
TT&C Comms	Antenna	253 to 333
Unique		
	Phasing Propellant	268 to 323
	Deorbiting Propellant	268 to 323
Propulsion	Pressurant/ RCS Prop	268 to 323
	LMP Tanks	244 to 344
	Pressurant Tank	244 to 344
	Heater	
Thermal	Cooling	
	MLI	133 to 473
Payload	Custom Radio	218 to 398
Fayloau	Patch	
TT&C Comms	Radio	238 to 358

Back to presentation

Repeater Payload

Other Considerations

- Doppler Shift
 - UHF max doppler shift seen by S/C and AOI: 10.17 kHz
 - Channel Bandwidth: 12.5 KHz
 - Software Defined Radio: Helps counteract shift

Encryption

- Only want people in the AOI to receive our communication
- AES/DES encryption available on our baseline radio

Repeater Operations

Minerva Channel Scheme				
Channel Number	Channel Description	Uplink frequency (MHz)	Downlink Frequency (MHz)	
1	Schedule/General Broadcast	410.6625	420.6625	
2	Food/Water	411.0875	421.0875	
3	Medical Aid (non-life threatening)	411.5125	421.5125	
4	Evacuation	411.9375	421.9375	
5	Life/death/SOS (1)	412.3625	422.3625	
6	Life/death/SOS (2)	412.7875	422.7875	

UHF Federal Incident Response Interoperability				
Channel Number	Channel Description	Uplink frequency (MHz)	Downlink Frequency (MHz)	
1	Calling	410.2375	410.2375	
2	Ad hoc assignment	410.4375	410.4375	
3	Ad hoc assignment	410.6375	410.6375	
4	SAR incident Command	410.8375	410.8375	
5	Ad hoc assignment	413.1875	413.1875	
6	Interagency Convoy	413.2125	413.2125	

LAUNCH

521

Launch - Trades

Air vs. Land vs. Sea

Metric	Air	Land	Sea	Weight
Development Cost	5	8	4	0.6
Maintenance Cost	6	8	3	0.6
Launch Timeliness	5	7	3	1
Regulations	4	6	8	0.4
Complexity	4	9	5	0.8
# launches from each site	3	8	7	0.4
Payload Size	5	9	8	0.7
People Risk	6	8	9	0.3
Launch Location	8	5	8	0.5
Total	26.9	40.6	29.5	

<u>Return</u>

System Trades

M - Z H R > A

Design vs. Buy

Option	Pros	Cons
Design	Low production cost, wide range of customizability, total control over launch vehicle system	Long time to develop the overall launch vehicle system
Buy	Little to no time needed to develop a complete launch vehicle system	Not feasible to buy and operate large number of vehicles from manufacturer, lack of customizability

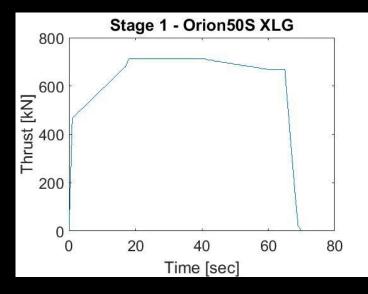
Outcome: Design

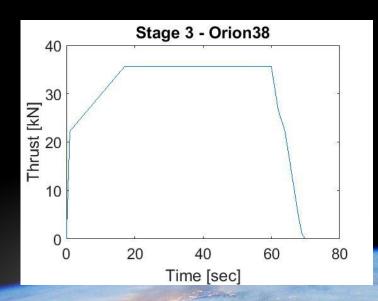
Launch - Structures

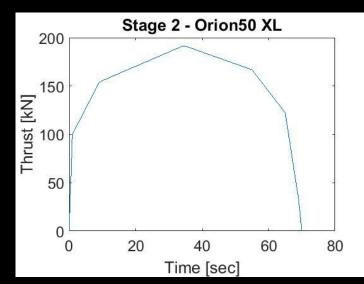
Expected maximum loading during flight:

Event	Altitude (km)	Gravity (g's)	Thrust (kN)	Drag (kN)	Dynamic Pressure (kPa)
Liftoff & Atmospheric Flight	0	10.7	667	84.6	80.4
Stage 1 Engine Cutoff	47.5	9.7	N/A	3.5	5.5
Coast #1	47.5 to 53.7	N/A	N/A	2.55	4.03
Stage 1 Jettison & Stage 2 Ignition	53.7	3.7	154	174	8.02
Stage 2 Flight	53.7 to 160	1	154	174	8.02

Launch - Structures

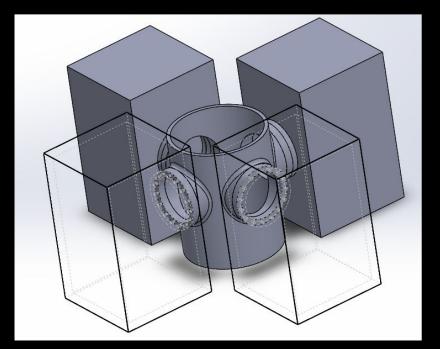



Expected loading during stages of flight cont...


Event	Altitude (km)	Gravity (g's)	Thrust (kN)	Drag (N)	Dynamic Pressure (Pa)
Stage 2 Engine Cutoff	160.1	N/A	N/A	N/A	N/A
Stage 3 Ignition	560	3.8	32	N/A	N/A
Stage 3 Flight	568	9.7	32	N/A	N/A

Orbit Injection Accuracy

What we do:


-Carmelle's results

Launch - Payload Integration

Radial Mounting

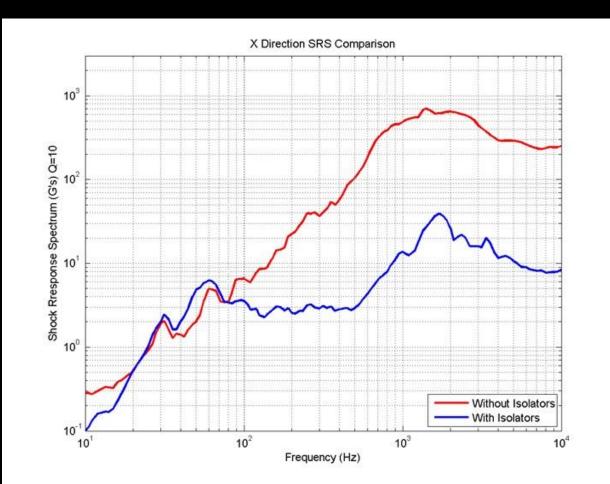
- Ability to deploy (2) sats quickly
- High stress areas near rings
- Additional structural mass added for cylindrical mounting component

Return

Launch - Payload Integration

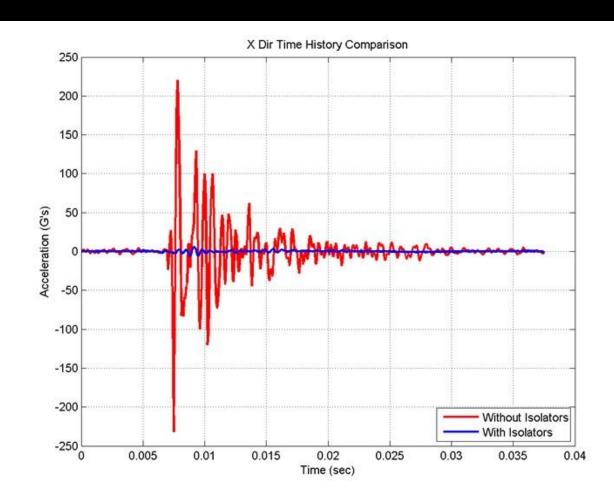
Ejection Spring

- Spring Constant = 300 N/m
- Mass = 29 g each (x16 per launch vehicle)
- Wire Diameter (mm): 1.72
- Outer Diameter (mm): 25.4
- Free Length (mm): 70.00
- # of Active Coils: 19
- Spring Constant (N/m): 300
- Material: Stainless 316 ASTM A316
- Min Safe Travel Height (mm): 36.12
- Required Loaded Height (mm): 40

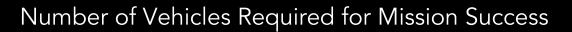

Launch - Payload Integration

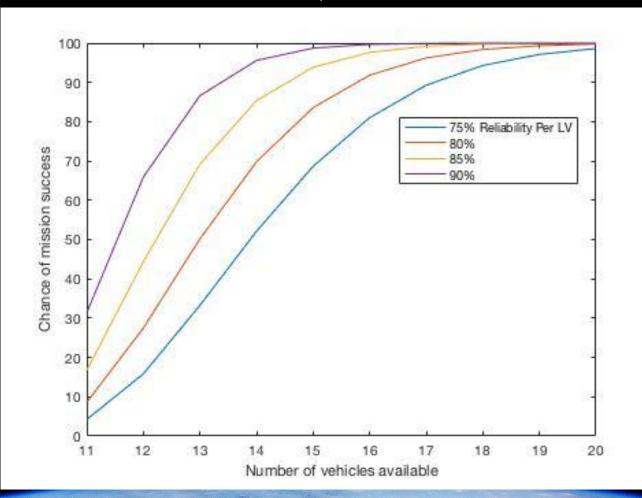
Payload Injection

- Satellites want to minimize ejection velocities
 - Rotational, positional, tumbling
- Direction of deployment consideration
 - \circ $\,$ Affects sat configuration on LV $\,$
 - Small ejection velocities make direction negligible
 - All satellites should deploy in same direction
- Pyros vs. actuators for release mechanism
 - Actuators produce no shock but require more power
 - Pyros allow for a simpler separation system
- Spring system vs. thrusters for ejection
 - Propellant plume can damage other satellites
 - Springs can be designed and sized to eject satellites at specific velocities

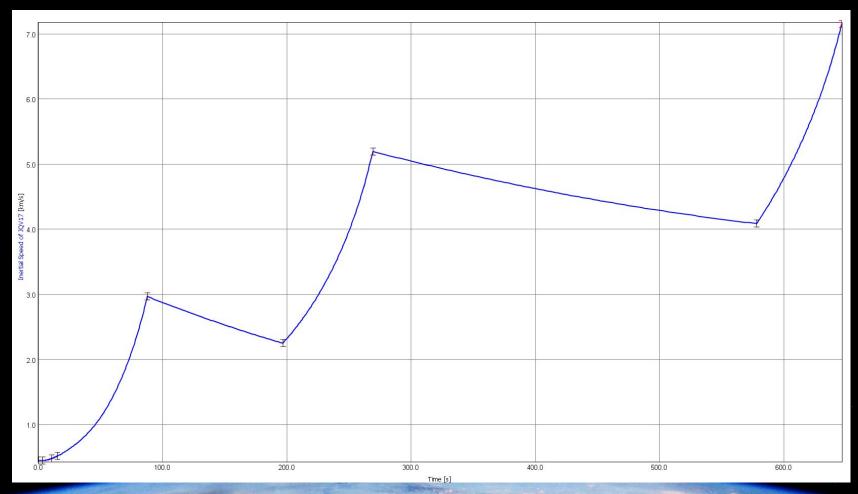


Launch - Payload Integration Shockwave Isolator Data


Launch - Payload Integration Shockwave Isolator Data



Launch - Redundancy



Launch - Trajectory Velocity Bleed

• 43.6 kg Comms Package, 625 x 1139 km, 15.95 degree inclination

Launch - Build vs. Buy

Decision: Build

<u>Return</u>

- LV purchase is unprecedented
- Buying ICBMs is difficult
- Will need a large number and most LV manufacturers don't have the capability to build that many
- Difficult to buy a launch vehicle and use your own operations system
 - Almost all companies that manufacture LVs require you to use their operating systems
- Building our own LV allows for customization

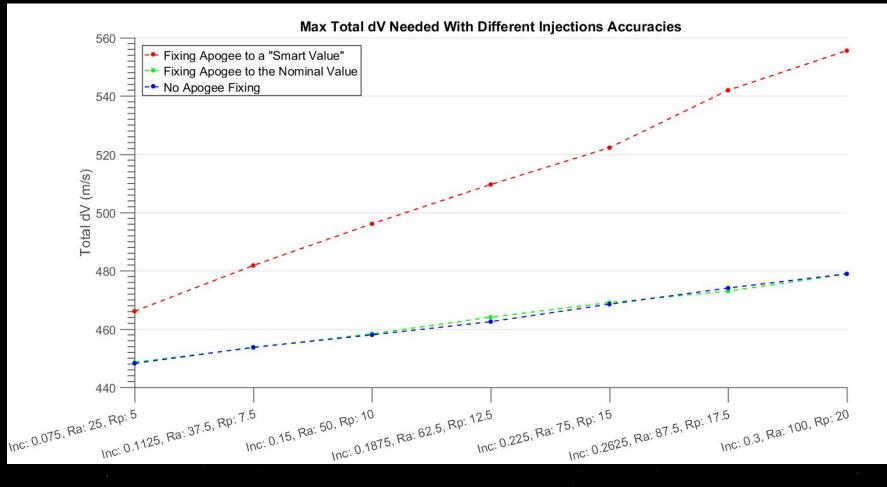
Launch - Solid vs Liquid

<u>Return</u>

Type of Fuel:	Performance	Complexity of Flight	Assembly	Cost	De-Orbit	Complexity of Design	Storage	Value:
Weight:	0.2	0.3	0	0.05	0.2	0.2	0.05	
Solid (HTPB)	Higher Isp/thrust	Maneuvers to spend fuel	Simple design	Much cheaper	Retro solids added on	Simple design	Good storage	4.2
	6	3	6	5	2	6	5	
Liquid (LMP-103S)	Monoprop	Standard flight trajectory	More complex	More expensive	Restart capabilities	More complex	Slightly more restricted	4.55
	3	6	3	2	6	3	5	

- Solid propellant has better performance by thrust and lsp metrics
- Liquid propellant has benefit of easier variability of orbits for launch
- Decided to baseline HTPB solid monopropellant due to storability capabilities, acceptable performance metrics, and simplicity of design integration

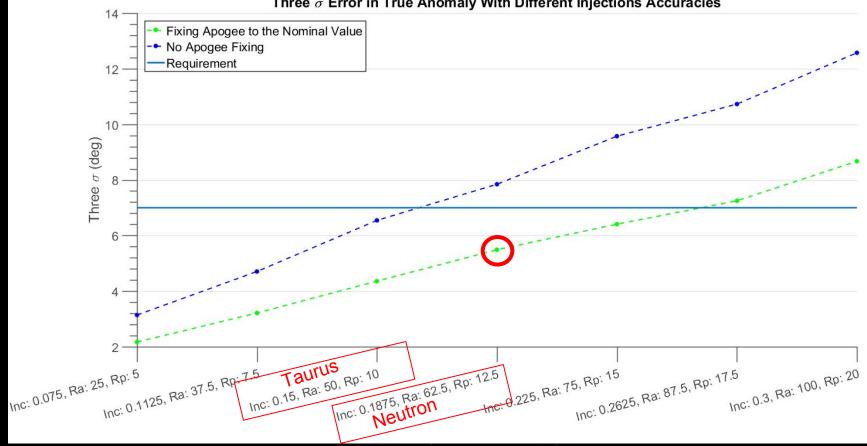
Power


Battery Trade

• Outcome: Lithium Ion Battery

	Lithium Ion Battery	Thermal Battery	
Storage	Capacity degrades on a yearly basis	Can be stored for long periods of time without maintenance	
Power Capacity	High Amp/Watt capability for long time period	High Amp/Watt, not able to maintain amount for required flight time	
Weight	Lightweight	Lightweight	
Size	Small	Small	
Testability	Allows for testing of components during storage	Can only be activated once, no testing capability	

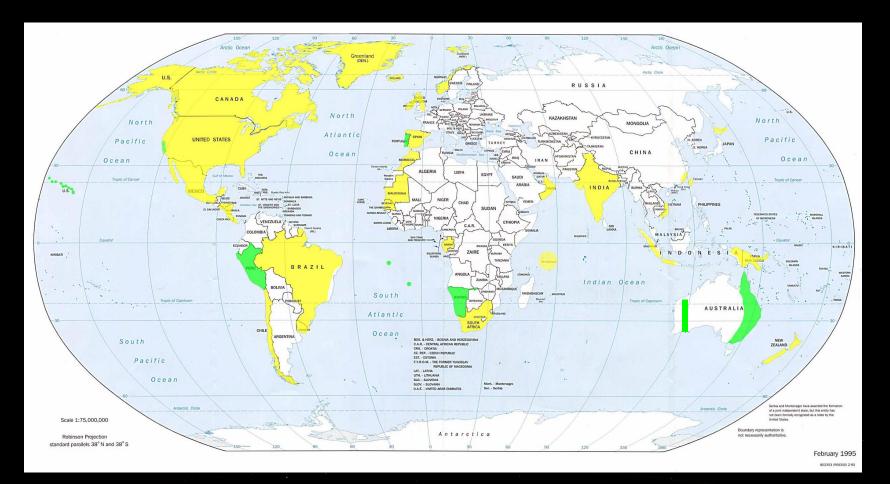
Injection Accuracy



Back to Presentation

Injection Accuracy

Three σ Error in True Anomaly With Different Injections Accuracies

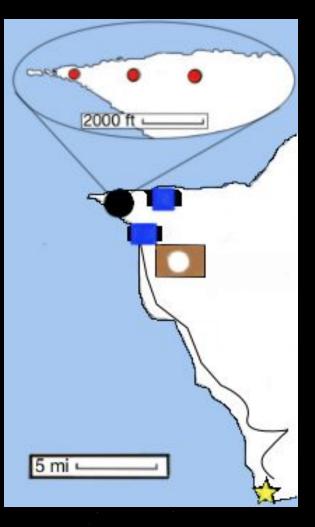

Back to Presentation

GROUND

Ground - Launch Sites Acceptable possible launch locations

Return to Ground Slides

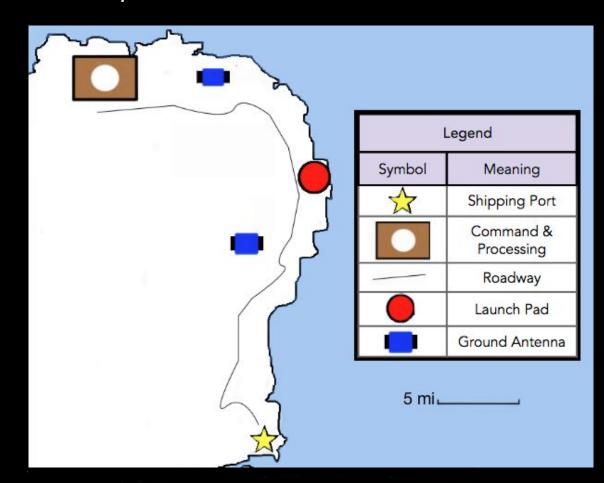
Ground - LV Communications


- TAS-50 Tracking Device
 - o 12 dB Yagi attached
 - Operational in ground wind conditions up to 32 kts
 - Max Elevation Range:
 -10° to 110°
 - Accuracy: ±0.10°
 - Yagi Antenna
 - TRS UHF12DD
 - HPBW: 32°

Note: 2-3 Yagis at each location accounts for elevation angle overlap and risk/reliability 5

Launch Sites

O'ahu Site Map


Legend							
Symbol	Meaning						
	Shipping Port						
	Command & Processing						
	Roadway						
	Launch Pad						
	Ground Antenna						

Launch Sites

Kauai Site Map

Shipping

• Shipping Cost (per container)

- Land: \$3500 across US to East Coast port
- Land: \$100-500 from port to launch pads
- Land: \$25000 for new roads on St. Helena
- Sea: \$10,000 from US port to ports near launch sites
- Total
 - ~\$420,000

MANUFACTURING

JERALYN GIBBS

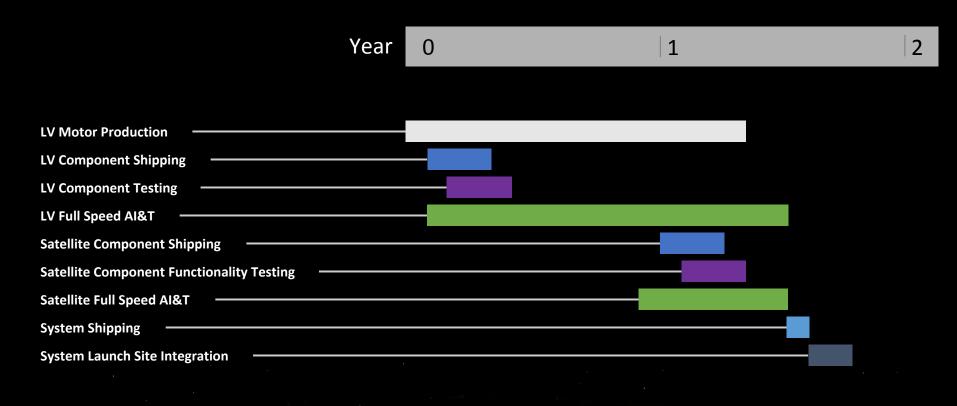
- All testing done with respect to MIL-HDBK-340A and NASA GEVS
 - Test electromagnetic interference to not adversely affect its own subsystems and components
 - Test for externally induced shocks greater at all frequencies than the envelope of external events
 - Temperature Cycling between temperature extremes to check performance at temperature gradient shifts

			ENVIRONMENTAL TEST MATRIX FOR													
				Qualification Test Campaign												
HA	IARDWARE DESCRIPTION STRUCTURAL & MECHANICAL															
LEVEL OF ASSEMBLY	ITEM	UNIT TYPE	MODAL SURVEY	STATIC LOADS	ACCELERATION	SINE BURST	SINE VIBRATION	RANDOM VIBRATION	ACOUSTICS	MECHANICAL SHOCK	PRESSURE PROFILE	MECHANICAL FUNCTION	TORQUE RATIO	LIFE TESTS	MASS PROPERTIES	
SC	Vis/Nir Satellite	Q	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	
P/L	Vis/Nir Optics	Q	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		
P/L	TIR Optics	Q	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		
P/L	Repeater	Q		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark		
S	Propulsion Subsyster	Q	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark		
S	Avionics Subsystem	Q		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark		
S	ADC Subsystem	Q		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	
S	Thermal Subsystem	Q		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark		

				ENVIRONMENTAL TEST MATRIX FOR																						
											Qu	Jalif	icati	on 1	lest	Can	npai	gn								
HARDWARE DESCRIPTION				EMC & MAGNETICS												THERMAL										
			EMISSIONS SUSCEPTIBILITY								()															
			CO					RA	DIAT	ED	CO	NDU	ICTE	D		RA	DIAT	ED			LES	VAC				
LEVEL OF ASSEMBLY	ITEM	UNIT TYPE	DC POWER LEADS	AC POWER LEADS	POWER LEADS	SPIKES ON ORBITER DC POWER LINES	SPIKES ON ORBITER AC POWER LINES	ANTENNA TERMINALS	AC MAGNETIC FIELD	E-FIELDS	PAYLOAD TRANSMITTERS	POWER LINE	INTERMODULATION PRODUCTS	SIGNAL REJECTION	CROSS MODULATION	POWER LINE TRANSIENTS	E-FIELD (GENERAL COMPATIBILITY)	ORBITER UNINTENTIONAL E-FIELD	MAGNETIC-FIELD SUSCEPTIBILITY	MAGNETIC PROPERTIES	LEAK	NUMBER OF THERMAL-VACUUM CYCLES	NUMBER OF THERMAL CYCLES (NON-VAC)	THERMAL BALANCE	TEMPERATURE-HUMIDITY	BAKEOUT
SC	Vis/Nir Satellite	Q			\checkmark	\checkmark	\checkmark			\checkmark		\checkmark				\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
P/L	Vis/Nir Optics	Q			\checkmark																	~	\checkmark	\checkmark	\checkmark	
P/L	TIR Optics	Q			\checkmark																	\checkmark	\checkmark	\checkmark	\checkmark	
P/L	Repeater	Q			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
S	Propulsion Subsyster	Q			\checkmark																\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
S	Avionics Subsystem	Q	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
S	ADC Subsystem	Q	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark						\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
S	Thermal Subsystem	Q			\checkmark																\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

			ENVIRONMENTAL TEST MATRIX FOR													
			Acceptance Test Campaign													
	HARDWARE DESCRIPTION		STR	STRUCTURAL & MECHANICAL												
LEVEL OF ASSEMBLY	ITEM	UNIT TYPE	MODAL SURVEY	STATIC LOADS	ACCELERATION	ACOUSTICS	PRESSURE PROFILE	MECHANICAL FUNCTION	MASS PROPERTIES	POWER LEADS	ANTENNA TERMINALS	E-FIELDS	PAYLOAD TRANSMITTERS	POWER LINE	MAGNETIC PROPERTIES	LEAK
SC	Fully Assembled Satellite	F	V	V	V	V	۷		V						V	
P/L	Vis/Nir Optics	F						I		V						
P/L	TIR Optics	F						1		٧						
P/L	Repeater	F						I		V	L		L			
S	Propulsion Subsystem	F						V		V						V
S	Avionics Subsystem	F								V		V				
AS	Communications As.	F									V					
С	Battery	F												х		
S	ADC Subsystem	F						V				V				۷
С	IMU	F								Х						
С	Star Tracker	F								Х						
С	GPS	F								Х						

Satellite Test Levels*


Test	Qualification	Acceptance
Structural Loads	1.25 x Limit Load	1.0 x Limit Load
Acoustics	Limit Level + 3dB for 1 min	Limit Level for 1 min
Random Vibe	Limit Level + 3dB for 1 min/axis	Limit Level for 1 min/axis
Sine Vibe	1.25 x Limit Load at 4 oct/min	Limit Level at 4 oct/min
Acceleration	1.25 x Limit Level for 30 sec	Limit Level for 30 sec
Mechanical Shock	1.4 x Limit Level on each axis	Limit Level on each axis
Thermal-Vacuum	Max/min predicted +/- 10 degC	Max/min predicted
Thermal Cycling	Max/min predicted +/- 15 degC	Max/min predicted

Based on GEVS-SE Kev A

Timeline for system after first use

ASTOS BANK

RELIABILITY

COMMS LINK BUDGETS

Imaging Downlink Budget

	Downlink				
TX Properties	Standard Units	dB			
Frequency (GHz)	26.8	14.28134794			
Gain of Transmitter (dB)	N/A	23.5			
Space Loss	N/A	-185.4033234			
Pointing Loss	N/A	0			
Line Loss	N/A	0			
Power (W)	0.63	-2.006594505			
Power into 40% Eff. Amp (W)	1.575	1.972805581			
RX Properties					
Gain of Reciever (dB)	N/A	61			
Link Properties					
Data Rate	1.16E+08	-80.6445798			
Ts	150	21.76091259			
Tr	285	24.5484486			
Boltzmann	N/A	228.6			
G/T	N/A	36.4515514			
EIRP	N/A	21.49340549			
Link SNR	N/A	20.49705364			
Target BER	10^-4	N/A			
Target SNR (no margin)	8.5	8.5			
SNR MARGIN		11.99705364			

And the second stress stress second

<u>Back to</u> <u>Presentation</u>

555

and the second

Comms Uplink/Downlink Budget

	ι	Jplink	Downlink					
TX Properties	Standard Units	dB	Standard Units	dB				
Frequency (GHz)	0.413	-3.840499483	0.423	-3.736596326				
Gain of Transmitter (dB)	N/A	-3	N/A	4				
Space Loss	N/A	-154.6798878	N/A	-154.8876941				
Pointing Loss	N/A	0	N/A	0				
Line Loss	N/A	0	N/A	0				
Power (W)	1	0	5	6.989700043				
Power into 40% Eff. Amp (W)	2.5	3.979400087	12.5	10.96910013				
RX Properties								
Gain of Reciever (dB)	N/A	4	N/A	-3				
Link Properties								
Data Rate	2.40E+03	-33.80211242	1.92E+04	-42.83301229				
Ts	285	24.5484486	380	25.79783597				
Tr	320	25.05149978	285	24.5484486				
Boltzmann	N/A	228.6	N/A	228.6				
G/T	N/A	-21.05149978	N/A	-27.5484486				
EIRP	N/A	-3	N/A	10.98970004				
Link SNR	N/A	16.06650002	N/A	14.32054506				
Target BER	10^-5	N/A	10^-5	N/A				
Target SNR (no margin)	10	10	10	10				
SNR MARGIN		6.066500016		4.320545058				

2 State Street Street Street

**

Imaging TT&C Uplink/Downlink Budget

		Uplink	Downlink					
TX Properties	Standard Units	dB	Standard Units	dB				
Frequency (GHz)	0.3	-5.228787453	0.3	-5.228787453				
Gain of Transmitter (dB)	N/A	21.4	N/A	0				
Space Loss	N/A	-146.3830526	N/A	-146.3830526				
Pointing Loss	N/A	0	N/A	0				
Line Loss	N/A	0	N/A	0				
Power (W)	0.25	-6.020599913	0.25	-6.020599913				
Power, 40% Eff. Amp (W)	0.625	-2.041199827	0.625	-2.041199827				
RX Properties								
Gain of Reciever (dB)	N/A	0	N/A	21.4				
Link Properties								
Data Rate	9600	-39.82271233	9600	-39.82271233				
Ts	293	24.6686762	293	24.6686762				
Tr	293	24.6686762	293	24.6686762				
Boltzmann	N/A	228.6	N/A	228.6				
G/T	N/A	-24.6686762	N/A	-3.268676204				
EIRP	N/A	15.37940009	N/A	-6.020599913				
Link SNR	N/A	33.10495897	N/A	33.10495897				
Target BER	10^-6	N/A	10^-5	N/A				
Target SNR (no margin)	10.5	10.5	10.5	10.5				
SNR MARGIN		22.60495897		22.60495897				

Comms TT&C Uplink/Downlink Budget

	ι	Jplink	Downlink				
TX Properties	Standard Units	dB	Standard Units	dB			
Frequency (GHz)	0.3	-5.228787453	0.3	-5.228787453			
Gain of Transmitter (dB)	N/A	12	N/A	0			
Space Loss	N/A	-151.9033118	N/A	-151.9033118			
Pointing Loss	N/A	0	N/A	0			
Line Loss	N/A	0	N/A	0			
Power (W)	0.25	-6.020599913	0.25	-6.020599913			
Power, 40% Eff. Amp (W)	0.625	-2.041199827	0.625	-2.041199827			
RX Properties							
Gain of Reciever (dB)	N/A	0	N/A	12			
Link Properties							
Data Rate	9600	-39.82271233	9600	-39.82271233			
Ts	298	24.74216264	298	24.74216264			
Tr	298	24.74216264	298	24.74216264			
Boltzmann	N/A	228.6	N/A	228.6			
G/T	N/A	-24.74216264	N/A	-12.74216264			
EIRP	N/A	5.979400087	N/A	-6.020599913			
Link SNR	N/A	18.11121327	N/A	18.11121327			
Target BER	10^-6	N/A	10^-5	N/A			
Target SNR (no margin)	10.5	10.5	10.5	10.5			
SNR MARGIN		7.61121327		7.61121327			

LV TT&C Uplink/Downlink Budget

	L	Jplink	Downlink				
TX Properties	Standard Units	dB	Standard Units	dB			
Frequency (GHz)	0.3	-5.228787453	0.3	-5.228787453			
Gain of Transmitter (dB)	N/A	12	N/A	4			
Space Loss	N/A	-149.7188366	N/A	-149.7188366			
Pointing Loss	N/A	0	N/A	0			
Line Loss	N/A	0	N/A	0			
Power (W)	0.25	-6.020599913	0.25	-6.020599913			
Power, 40% Eff. Amp (W)	0.625	-2.041199827	0.625	-2.041199827			
RX Properties							
Gain of Reciever (dB)	N/A	4	N/A	12			
Link Properties							
Data Rate	9600	-39.82271233	9600	-39.82271233			
Ts	298	24.74216264	298	24.74216264			
Tr	298	24.74216264	298	24.74216264			
Boltzmann	N/A	228.6	N/A	228.6			
G/T	N/A	-20.74216264	N/A	-12.74216264			
EIRP	N/A	5.979400087	N/A	-2.020599913			
Link SNR	N/A	24.29568854	N/A	24.29568854			
Target BER	10^-6	N/A	10^-6	N/A			
Target SNR (no margin)	10.5	10.5	10.5	10.5			
SNR MARGIN		13.79568854		13.79568854			